

COMUNE DI LIVORNO

Dipartimento 1 – Area Tecnica Politiche del Territorio Settore Ambiente

Ufficio Prevenzione integrata dell'inquinamento e Politiche Energetiche Piazza del Municipio nº 1 – Livorno

VERBALE DELLA CONFERENZA DEI SERVIZI BONIFICHE DEL 18.10.2018

Prot. 133029 del 14/10/2018

In Livorno, Piazza del Municipio n° 1, alle ore 09,00 del giorno 18 ottobre 2018 presso la Sala preConsiglio del Comune di Livorno si è tenuta la Conferenza dei Servizi in materia di bonifiche dei siti inquinati, convocata con nota prot. 115349 del 19.09.2018 con il seguente ordine del giorno:

ore 09,30 Bonifica Area ex P.V. ESSO 8457 Via Firenze:

"Variante al Progetto Unico di Bonifica"

ore 10,15 Bonifica Area ex P.V. ESSO 8456 Viale Petrarca:

"Trasmissione esiti analitici acque sotterranee e gas interstiziali"

ore 10,30 Bonifica Area ex P.V. ESSO 8469 Viale N. Sauro:

"Trasmissione risultati del monitoraggio acque sotterranee (marzo-maggio 2018)"

ore 10,45 Bonifica Area P.V. Carburanti ENI Via Marradi:

"Risposta alle prescrizioni di cui alla C.d.S. del 06.07.2018

ore 11,45 Varie ed eventuali.

Alle ore 09.30 del giorno 18 ottobre 2018 presso la sala preConsiliare del Comune di Livorno iniziano i lavori della Conferenza dei Servizi .

Presenze:

Regione Toscana	Dott. Paolo Criscuolo.
Dipartimento Provinciale ARPAT di Livorno	Dott.ssa Lucia Rocchi; Dott. Dario Del Seppia
ASL Nord Ovest Livorno	Dott. Mauro Mirabelli
Comune di Livorno	Dott. Michele Danzi; Dott.ssa Licoris Toncinich.

Il Dott. Paolo Criscuolo della Regione Toscana partecipa alla riunione anche se non espressamente delegato dall'Ente in quanto la Regione ha la titolarità per il rilascio della Certificazione di avvenuta bonifica.

Il Dipartimento Prov.le ARPAT di Livorno ha inoltrato, tramite PEC, i relativi contributi istruttori.

0

1. PUNTO ALL'ORDINE DEL GIORNO:

Bonifica Area ex P.V. ESSO 8457 Via Firenze (COD. SISBON LI175):

"Variante al Progetto Unico di Bonifica"

Alle ore 09,30 viene discusso il documento "Variante al Progetto Unico di Bonifica" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a. ed acquisito al prot. 110005 in data 06.09.2018.

La Conferenza dei Servizi del 18 ottobre 2018

Visto il documento "Variante al Progetto Unico di Bonifica" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a.;

Tenuto conto del contributo tecnico di ARPAT prot. 73332 del 17.10.2018 (in Atti nº 129604 del 18.10.2018) parte integrante del presente verbale;

Tenuto conto del contributo tecnico della Regione Toscana prot. 480579 del 17.10.2018 (in Atti n° 129025 del 17.10.2018) parte integrante del presente verbale;

Tenuto conto degli esiti della discussione odierna.

concorda quanto segue:

- 1. di approvare ai sensi della normativa vigente in materia la "Variante al Progetto Unico di Bonifica" con le prescrizioni di cui al contributo istruttorio di ARPAT;
- 2. con lo scopo di confermare i risultati della bonifica occorre effettuare un monitoraggio presso tutti i piezometri presenti in situ su tutti i parametri fin qui analizzati, a partire dal monitoraggio che traguarda il raggiungimento degli obiettivi di bonifica con la seguente cadenza: ad un mese dal monitoraggio conforme dopo 3 mesi dal monitoraggio conforme dopo 6 mesi dal monitoraggio conforme;
- 3. di richiedere alla Ditta, in accordo a quanto previsto dalla DGRT 301/2010, di comunicare ai soggetti interessati, ai sensi della D.G.R.T. 301/2010, l'inizio delle attività con un preavviso di almeno 10 giorni lavorativi;
- 4. in accordo a quanto previsto dalla DGRT 301/2010, compilare la modulistica relativa all'iter amministrativo ed il corrispondente report analitico in formato standard sul portale SISBON (http://sira.arpat.toscana.it/sira/sisbon.html).

Partecipano alla Conferenza dei Servizi l'Ing. Daniela Reale ed il Dott. Luca Pecchia in rappresentanza della Soc. AECOM URS Italia S.p.a.

and all

ARPAT - AREA VASTA COSTA - Dipartimento di Livorno

Via Marradi, 114 - 57126 - Livorno

N. Prot: Vedi segnatura informatica

cl.: Ll.01.23.07/53.16 del

a mezzo: PEC

Comune di Livorno а

> Dipartimento 1 – Area Tecnica Settore Ambiente comune.livorno@postacert.toscana.it

Regione Toscana

Direzione Ambiente ed Energia Settore Bonifiche e aut. Rifiuti regionetoscana@postacert.toscana.it

LI175 – PV Petrolifera Adriatica, Ex PVF ESSO 8456, ubicato in Via Firenze nel Comune di Oggetto: Livorno. Parere su Variante al Progetto Unico di Bonifica

Questo parere è espresso in risposta alla convocazione di Conferenza dei Servizi (CdS) da parte del Comune di Livorno (agli atti di questo Ufficio con Prot. n. 65563 del 19.09.2018). In tale sede sarà discusso anche il documento in oggetto inviato via PEC dalla società Petrolifera Adriatica S.p.A. (di seguito Petrolifera), in nome e per conto di Petrolifera il 6.09.2018 (in archivio presso questi uffici con Prot. n° 62390 del 6/07/2018) e realizzato dalla società AECOM URL Italia S.p.A. (di seguito AECOM). Premesso che:

- il quadro normativo di riferimento è D.Lgs. 152/2006 e s.m.i.; L.R. 30/2006; D.Lgs. 4/2008; D.G.R.T. 301/2010; DM 31/2015;
- per quanto riguarda l'iter amministrativo relativo al sito in oggetto si rimanda ai precedenti pareri emessi da questo Dipartimento.

Considerato che:

Analisi del Laboratorio di Parte (LdP):

- il monitoraggio delle acque sotterranee effettuato tra Marzo 2017 ed Aprile 2018 (All. 1), intramezzato da interventi di immissione della miscela di Persolfato di Na (13-14/03/2017, 07-08/08/2017 e 30-31/10/2017), ricercando gli inquinanti inorganici, i metalli, gli Idrocarburi totali e aromatici, l'MtBE e l'EtBE, ha evidenziato non conformità (superamento delle CSC o delle CSR, per i composti idrocarburici) per:
 - Solfati. Nel monitoraggio del 17.04.2018 il parametro è risultato conforme in tutti i punti di analisi;
 - As, Fe, Mn, Ni, Cr VI e Pb. Tali superamenti risultano ridotti al solo Mn nel corso del monitoraggio del 17.04.2018;
 - Idrocarburi totali, Etilbenzene, p-Xilene. Tali superamenti risultano ridotti ai soli Idrocarburi totali nel corso del monitoraggio del 17.04.2018.

Interventi di MISE:

gli interventi di MISE effettuati nel periodo di monitoraggio sono consistiti nello spurgo forzato delle acque sotterranee nei giorni 13.12.2017 ed 11.02.2018.

Piano di indagini integrative:

- al fine di migliorare il monitoraggio presso il sito e rimuovere la contaminazione residua presente a carico dei composti idrocarburici, AECOM propone di realizzare:
 - 3 sondaggi a distruzione di nucleo fino ad una profondità di 6 m dal p.c. (comunque in grado di intercettare almeno 4 m di falda), da attrezzare a piezometri di monitoraggio (PM9 ÷ PM11), 2 dei quali da considerare come Punti di Conformità (POCs);
 - prelievo delle acque sotterranee per le determinazioni analitiche.

Pagina 1 di 3

tel. 055.32061 - fax 055.3206324 - p.iva 04686190481 - www.arpat.toscana.it - per informazioni: urp@arpat.toscana.it per comunicazioni ufficiali PEC: arpat.protocollo@postacert.toscana.it - (accetta solo PEC), ARPAT tratta i dati come da Reg.UE 679/2016. Per info su modalità e diritti degli interessati: www.arpat.toscana.it/utilita/privacy

Interventi di Bonifica, Monitoraggio e Collaudo:

- ◆ AECOM nel documento presentato propone di rimuovere la contaminazione residua attraverso l'immissione di composti ossidanti idrosolubili sotto forma di Perossido di idrogeno in soluzione diluita al 5%;
- ♦ il trattamento è previsto una volta sola, per un volume complessivo di soluzione pari a circa 15 m³. Tale volume è stimato a partire dal volume di acquifero da trattare e tenendo conto di un valore di porosità di mobilizzazione tipica per la tipologia di suolo pari al 5%;
- le applicazioni verranno realizzate utilizzando un singolo punto di immissione (complessivamente sono 11 i punti di immissione) per volta, per valutarne gli effetti;
- durante il trattamento sarà realizzato anche il monitoraggio a cadenza trimestrale di: parametri idrochimici (in base ai parametri di monitoraggio fin qui analizzati), del livello piezometrico, dei parametri chimico fisici e dei gas a testa pozzo (VOC);
- al fine di valutare lo stato di avanzamento della bonifica, con cadenza semestrale, verrà realizzato anche un monitoraggio dei parametri geochimici: metano, nitrati, domanda di ossigeno (COD), carica batterica totale, batteri idrocarburo ossidanti;
- ◆ l'intervento ha una durata prevista di 12 mesi e si riterrà concluso nel momento in cui verranno raggiunte concentrazioni degli inquinanti in falda pari alle CSC, presso i POCs e alle CSR, (presso i punti interni al sito;
- ◆ come collaudo viene proposto di realizzare un monitoraggio presso tutti i punti della rete di monitoraggio, in contraddittorio con gli Enti di controllo.

Le analisi di confronto effettuate da ARPAT sulle acque sotterranee (All. 1) nei giorni 19.04.2017 (P1, PM3 e PM6), 11.08.2017 (PM2, PM3 e IN3) e 23.08.2017 (PM2, PM4 e IN3), ricercando i parametri metalli, Idrocarburi totali, aromatici , MtBE e EtBE, hanno evidenziato superamenti delle CSR (composti idrocarburici) o delle CSC per i parametri Idrocarburi totali, Fe, Mn, Al, As, Be, Co, Fe, Mn, Ni, Pb e Se.

Conclusioni

In base ai documenti analizzati da questo Dipartimento ed alle analisi di confronto effettuate da ARPAT si evidenzia che:

- si concorda con i risultati ottenuti dal LdP;
- > si condividono gli interventi proposti da AECOM, evidenziando che:
 - vista la reazione esotermica determinata dal composto Perossido di Idrogeno, è necessario mettere in atto tutte le misure volte ad impedire la migrazione degli inquinanti (organici ed inorganici) al di fuori del sito e la dispersione in aria dei composti organici volatili. Nel caso in cui i monitoraggi realizzati presso i POCs evidenzino il diffondersi dei contaminanti, sarà necessario prevedere l'attivazione di un sistema di barrieramento;
 - per rallentare la velocità di reazione è necessario valutare la possibilità di utilizzare perossidi solidi (ad esempio perossido di calcio) che ne moderano la velocità di dissoluzione permettendo una migliore distribuzione;
- al fine di confermare i risultati della bonifica, e come realizzato per altri siti ricadenti nel territorio di competenza di questo Dipartimento, si propone di effettuare un monitoraggio presso tutti i piezometri presenti in sito di tutti i parametri fin qui analizzati, a partire dal monitoraggio che traguarda il raggiungimento degli obiettivi di bonifica con la seguente cadenza:
 - a 1 mese dal monitoraggio conforme;
 - dopo 3 mesi dal monitoraggio conforme;
 - dopo 6 mesi dal monitoraggio conforme.

Inoltre si ricorda che:

- ➢ in base a quanto previsto dalla DGRT 301/2010 il soggetto obbligato comunica alla struttura ARPAT, con preavviso non inferiore a dieci giorni lavorativi, la data ed il luogo di effettuazione delle indagini;
- per il sito con codice SISBON LI175, in accordo a quanto previsto dal DGRT 301/10, è necessario compilare sul portale SISBON della Regione Toscana

(http://sira.arpat.toscana.it/sira/sisbon.html) la modulistica relativa alla corrispondente fase tecnico amministrativa ed i risultati analitici in formato standard.

Cordiali saluti Livorno 16/10/2018

Responsabile del Dipartimento ARPAT di Livorno Dr Chim. Lucia Rocchi¹

Elenco allegati:

- 1. Tabella di confronto delle analisi delle acque sotterranee.
- 2. Rapporti di Prova.
- 1 Documento informatico sottoscritto con firma digitale ai sensi del D.Lgs 82/2005. L'originale informatico è stato predisposto e conservato presso ARPAT in conformità alle regole tecniche di cui all'art. 71 del D.Lgs 82/2005. Nella copia analogica la sottoscrizione con firma autografa è sostituita dall'indicazione a stampa del nominativo del soggetto responsabile secondo le disposizioni di cui all'art. 3 del D.Lgs 39/1993

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7744

del 05/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM, REGISTRO: 5974

Anno: 2017

Data registrazione: 11/08/2017

Pratica N°: 39972

Campione di: BON#PM2 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: Ll 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il:	16/08/2017	Conclusa il:	04/09/201	7	
Parametro	Metodo	Rist	ultato	Unità di Misura	Incertezza
ALLUMINIO	APHA Standard Methods f Examination of Water and Wastewater 22nd ed. 2012 3125	,	51	µg/L	
CROMO	APHA Standard Methods (Examination of Water and Wastewater 22nd ed. 2012 3125		1	· μg/L	
MANGANESE	APHA Standard Methods Examination of Water and Wastewater 22nd ed. 201; 3125		9870	μg/L	
FERRO	APHA Standard Methods Examination of Water and Wastewater 22nd ed. 201 3125		41300	µg/L	
NICHEL	APHA Standard Methods Examination of Water and Wastewater 22nd ed. 201 3125		23	µg/L	±3
RAME	APHA Standard Methods Examination of Water and Wastewater 22nd ed. 201 3125	I	1,6	μg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7744

del 05/09/2017

Prova iniziata il: 16/08/2017	7	Conclusa il:	04/09/2017	7 %	
arametro	Metodo	Risc	iltato	Unità di Misura	Incertezza
ZINCO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	23	, µg/L	
ARSENICO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	8,2	µg/L	
SELENIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	0,5	µg/L	,
CADMIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	0,07	µg/L	
ANTIMONIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,5	µg/L	
PIOMBO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	1	µg/L	
BERILLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,05	μg/L ·	
COBALTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	3,4	µg/L	2
TALLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,05	µg/L	
ARGENTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	1	µg/L	
CROMO VI	MI/C/AVL 013 rev.0 2015	_[k] <	0,5	μg/L	

Note alla Prova:

L' incertezza è espressa come incertezza estesa , livello di probabilità p=0,95 , fattore di copertura k=2, numero di gradi di libertà >10.

l valori di incertezza estesa per i parametri. Ferro e Manganese, superiori ai valori limite, non sono stati riportati in quanto superiori ai VL + 2U dove VL corrisponde al limite di: 200 µg/L per il Ferro e 50 µg/L per il Manganese.

Agenzia Regionale per la Protezione Ambientale della Toscana
Area Vasta Toscana Costa - Sett. Laboratorio
57126 Livorno Via Marradi, 114
tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7744

del 05/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7745

del 05/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Data registrazione: 11/08/2017

NUM.REGISTRO:

5975

Anno: 2017

Pratica Nº: 39972

Campione di: BON#PM3 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il:	16/08/2017	Conclusa il:	04/09/20	17	
arametro	Metodo	Rist	Itato	Unità di Misura	Incertezza
ALLUMINIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	s	20	µg/L	
CROMO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	` <	1	h g/r	·
MANGANESE	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	568	µg/L	
FERRO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	357	hg/L	Magazini da
NICHEL	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	6,5	µg/L	
RAME	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	1,7	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7745

del 05/09/2017

Prova iniziata il:	16/08/2017	Conclusa il:	04/09/2017	7	
Parametro	Metodo	Risi	ultato	Unità di Misura	Incertezza
ZINCO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	59	hā/r	
ARSENICO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	1,5	µg/L	
SELENIO	APHA Standard Methods fo Examination of Water and Wastewater 22nd ed. 2012, 3125	r =	1,5	µg/L	
CADMIO	APHA Standard Methods fo Examination of Water and Wastewater 22nd ed. 2012, 3125	r =	0,12	µg/L	
ANTIMONIO	APHA Standard Methods fo Examination of Water and Wastewater 22nd ed. 2012, 3125	r <	0,5	µg/L	
PIOMBO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125		1	µg/L	
BERILLIO ,	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012 3125		0,05	µg/L	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
COBALTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012 3125	·	1,4	µg/L	
TALLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012 3125		0,05	µg/L	
ARGENTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012 3125		3,2	µg/L	
CROMO VI	MI/C/AVL 013 rev.0 2015	<	0,5	μg/L	

Note alla Prova:

I valori di incertezza estesa per i parametri. Ferro e Manganese, superiori ai valori limite, non sono stati riportati in quanto superiori ai VL + 2U dove VL corrisponde al limite di: 200 μg/L per il Ferro e 50 μg/L per il Manganese.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7745

del 05/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett, Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7746

del 05/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 5976 Anno: 2017

Data registrazione: 11/08/2017

Pratica N°: 39972

Campione di: BON#IN3 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo Nº: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 16/0	08/2017	Conclusa il:	04/09/2017	·	
Parametro	Metodo	Risı	ıltato	Unità di Misura	Incertezza
ALLUMINIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	25700	hg\r	
СКОМО	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	22	µg/L	
MANGANESE	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	50700	μg/L	
FERRO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	53410	µg/L	
NICHEL	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	700	ha/F	, year
RAME	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	Ξ	189	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana
Area Vasta Toscana Costa - Sett. Laboratorio
57126 Livorno Via Marradi, 114
tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7746

del 05/09/2017

Prova iniziata il: 1	6/08/2017	Conclusa il:	04/09/2017		
Parametro	Metodo	Risu	Itato	Unità di Misura	Incertezza
ZINCO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	354	µg/L	
ARSENICO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	2	18	µg/L	
SELENIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	34	hg/r	
CADMIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	4,5	hð/r	±0,7
ANTIMONIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	Ξ	0,7	hg/F	
PIOMBO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	34	µg/L	
BERILLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	10	µg/L	40
COBALTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125		243	µg/L	
TALLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	0,10	µg/L	
ARGENTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	1	µg/L	
CROMO VI	MI/C/AVL 013 rev.0 2015	<	0,5	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7746

del 05/09/2017

Note alla Prova:

L' incertezza è espressa come incertezza estesa , livello di probabilità p=0,95 , fattore di copertura k=2, numero di gradi di libertà >10.

l valori di incertezza estesa per i parametri Alluminio, Ferro, Manganese, Nichel, Arsenico, Selenio, Piombo, Berillio e Cobalto, superiori ai valori limite, non sono stati riportati in quanto superiori ai VL + 2U dove VL corrisponde al limite di: 200 μ g/L per l'Alluminio, 200 μ g/L per il Ferro, 50 μ g/L per il Manganese, 20 μ g/L per il Nichel, 10 μ g/L per l'Arsenico, 10 μ g/L per il Selenio, 10 μ g/L per il Piombo, 4 μ g/L per il Berillio e 50 μ g/L per il Cobalto.

Nel campione era presente il corpo di fondo.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8441

del 15/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 - LIVORNO

NUM.REGISTRO: 5974

Anno: 2017

Data registrazione: 11/08/2017

Pratica N°: 39972

Campione di: BON#PM2 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 21/07 15 °C

In Dipartimento: REFRIGERATO

Area Vasta Toscana Costa - Sett. Laboratorio Loc. Esecuz. Prova: IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 29/08/2017	7	Conclusa il:	14/09/20	117	
Parametro Parametro	Metodo	Rist	ıltato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	8,6	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	=	9,1	μg/L	<u> </u>
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,9	µg/L	±0,5
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,7	µg/L	
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	2,8	µg/L	116.16.2
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+8	=	420	µg/L	±200

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8441

del 15/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Setti Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8442

del 15/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

NUM.REGISTRO: 5975

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Anno: 2017

Data registrazione: 11/08/2017

Pratica N°: 39972

Campione di: BON#PM3 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 29/08/2017	7	Conclusa il:	14/09/20)17	
Parametro	Metodo	Risi	ıltato	, Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	1,9	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	=	7,3	µg/L	
BENZENÉ	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
TOLUENE .	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L .	# #
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,7	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	300	μg/L	±140

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8442

del 15/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

> Responsabile U.O. Dr. Paolo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 fax0555305615 tel. 05532061

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8443

del 15/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

NUM.REGISTRO: 5976

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Anno: 2017

Data registrazione: 11/08/2017

Pratica N°: 39972

Campione di: BON#IN3 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 29/08/2017	Conclusa il:	14/09/	2017		
Parametro	Metodo	Ris	ultato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	< *	1,0	· µg/L	- 3.4
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	<	1,0	µg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,8	µg/L	±0,4
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	Δ =	0,3	. μg/L	(34).
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	100	µg/L	
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	42	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	= =====================================	3600	µg/L	

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8443

del 15/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8441

del 15/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 5974 Anno: 2017

Data registrazione: 11/08/2017

Pratica N°: 39972

Campione di: BON#PM2 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 29/08/2017	7 Co	onclusa il: 14/09/20	17	
Parametro	Metodo	Risultato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	= 8,6	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	= 9,1	µg/L	50
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	= 0,9	µg/L	±0,5
TOLUENE	EPA 5030C 2003 + EPA - 8260C 2006	< 0,1 .	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	= 0,7	µg/L	. 13-13-
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	= 2,8	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	< 0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	= 420	µg/L	±200

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8441

del 15/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8442

del 15/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 5975

Anno: 2017

Data registrazione: 11/08/2017

Pratica N°: 39972

Campione di: BON#PM3 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 29/08/2017	7 Co	onclusa il: 14/09/20)17	
Parametro	Metodo	Risultato	. Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	= 1,9	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	= 7,3	µg/L	-030041 10000
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	< 0,1	µg/L	
TOLUENE .	EPA 5030C 2003 + EPA 8260C 2006	< 0,1	μg/L .	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	< 0,1	μg/L	
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	= 0,7	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	< 0,1	µg/L	704
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	= 300	μg/L	±140

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana
Area Vasta Toscana Costa - Sett. Laboratorio
57126 Livorno Via Marradi, 114
tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8442

del 15/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Paolo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8443

del 15/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO:

5976

Anno: 2017

Data registrazione: 11/08/2017

Pratica N°: 39972

Campione di: BON#IN3 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo Nº: 20170811-00347-1

del: 11/08/2017

Data di prelievo: 11/08/2017

Data di consegna: 11/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 21/07 15 °C

in Dipartimento: REFRIGERATO

Area Vasta Toscana Costa - Sett. Laboratorio Loc. Esecuz. Prova: IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 29/08/2017		Conclusa il:	14/09/2017	p. 14	
Parametro	Metodo	Ris	ultato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	<	1,0 -	μg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	<	1,0	μg/L	* 82
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	±	0,8	hg/L	±0,4
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,3	hâ\ŗ	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	100	μg/L	
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	42	μg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	μg/L	4444
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	3600	µg/L	

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8443

del 15/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett, Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-4304

del 06/06/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 2214

Anno: 2017

Data registrazione: 19/04/2017

Pratica N°: 39972

Campione di: BON#PM1 (ACQUA PIEZOMETRICA)

Prelevato da: PETROLTECNICA

Verb. Prelievo N°: 20170419-00347-1

del: 19/04/2017

Data di prelievo: 19/04/2017

Data di consegna: 19/04/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 19/04 9 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 05/05/2017		Conclusa il:	05/06/2017		
Parametro	Metodo	Ris	ultato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	4,5	μg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,7	µg/L	±0,4
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	690	μg/L	±320

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-4304

del 06/06/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.
Dr. Paolo Alternura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-4305

del 06/06/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

NUM.REGISTRO: 2215

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Anno: 2017

Data registrazione: 19/04/2017

Pratica Nº: 39972

Campione di: BON#PM6 (ACQUA PIEZOMETRICA)

Prelevato da: PETROLTECNICA

Verb. Prelievo N°: 20170419-00347-1

del: 19/04/2017

Data di prelievo: 19/04/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 19/04 9 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 05/05/201	7	Conclusa il:	05/06/201	7	
Parametro	Metodo		ultato	Unità di Misura	Incertezza
CLOROMETANO	EPA 5030C 2003 + EPA 8260C 2006	=	200	µg/L	
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	5,3	µg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	1,1	µg/L	±0,6
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,2	µg/L	
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,3	μg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	μg/L	0 - 1 1 - 1 - 1 - 1 - 1 - 1
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	2400	μg/L	

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

numero di gradi di libertà >10.

Si segnala la presenza di diclorometano in concentrazione pari a 21 µg/L.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-4305

del 06/06/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.
Dr Paolo Alternura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-4306

del 06/06/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 2216

Anno: 2017

Data registrazione: 19/04/2017

Pratica N°: 39972

Campione di: BON#IN3 (ACQUA PIEZOMETRICA)

Prelevato da: PETROLTECNICA

Verb. Prelievo N°: 20170419-00347-1

del: 19/04/2017

Data di prelievo: 19/04/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 19/04 9 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 05/05/2017		Conclusa il:	05/06/2017		
Parametro	Metodo	Risu	Itato	Unità di Misura	Incertezza
CLOROMETANO	EPA 5030C 2003 + EPA 8260C 2006	=	2600	µg/L	
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	1,5	μg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	4,6	µg/L	
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	*	12	µg/L	±6,0
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	1000	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	E	1300	μg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	110000	µg/L	

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel, 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-4306

del 06/06/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.
Dr. Paodo Alteniura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-4307

del 06/06/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

NUM.REGISTRO: 2217

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Anno: 2017

Data registrazione: 19/04/2017

Pratica N°: 39972

Campione di: BON#PM3 (ACQUA PIEZOMETRICA)

Prelevato da: PETROLTECNICA

Verb. Prelievo N°: 20170419-00347-1

del: 19/04/2017

Data di prelievo: 19/04/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 19/04 9 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 05/05/201	7	Conc	lusa il:	05/06/201	17	
Parametro	Metodo	UC	Ris	ultato	Unità di Misura	Incertezza
CLOROMETANO	EPA 5030C 2003 + EPA 8260C 2006		=	1,6	hâ\r	±0,8
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006		=	4,5	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	ET	=	73	μg/L	±37
BENZENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1	µg/L	
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B		=	160	µg/L	

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2, numero di gradi di libertà >10.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-4307

del 06/06/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Dr. Paolo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8912

del 29/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

NUM.REGISTRO:

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

6076

Anno: 2017

Data registrazione: 23/08/2017

Pratica Nº: 39972

Campione di: BON#PM2(ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170823-00895-1

del: 23/08/2017

Data di prelievo: 23/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: Ll 23/08-10 °C

In Dipartimento: REFRIGERATO

Area Vasta Toscana Costa - Sett. Laboratorio Loc. Esecuz. Prova: IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 28/08/2013	Conclusa	il:	26/09/20)17	AT THE RESERVE OF	
Parametro	Metodo		Ris	ultato	Unità di Misura	Incertezza
CLOROMETANO	EPA 5030C 2003 + EPA 8260C 2006	H 23455	=	2,2	µg/L	±1,1
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006		=	6,9	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	74	=	6,6	µg/L	
BENZENE .	EPA 5030C 2003 + EPA 8260C 2006	-	<	0,1	µg/L	
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006		=	1,5	µg/L	.00.0
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006		=	3,5	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1	µg/L	maest
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B		=	580	µg/L	±270

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8912

del 29/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Or. Paolo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8913

del 29/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 6077

Anno: 2017

Data registrazione: 23/08/2017

Data di prelievo: 23/08/2017

Pratica Nº: 39972

Campione di: BON#PM4(ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo Nº: 20170823-00895-1

del: 23/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 23/08-10 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 28/08/2017	7	Conclusa il:	26/09/20	17	A SE OF SECURIOR PER PERSONAL
Parametro	Metodo	Rist	ıltato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	1,6	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	<	1,0	µg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,3	µg/L	
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	μg/L .	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,5	µg/L	
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	2,5	hg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	3 .44.
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	900	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8913

del 29/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Dr. Paglo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8914

del 29/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 6078

Anno: 2017

Data registrazione: 23/08/2017

Pratica N°: 39972

Campione di: BON#IN3(ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo Nº: 20170823-00895-1

del: 23/08/2017

Data di prelievo: 23/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: Ll 23/08-10 °C

In Dipartimento: REFRIGERATO

Area Vasta Toscana Costa - Sett. Laboratorio Loc. Esecuz. Prova: IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 28/08/2017	7	Conclusa il:	26/09/20	17	
Parametro	Metodo	Rist	ıltato	Unità di Misura	Incertezza
CLOROMETANO	EPA 5030C 2003 + EPA 8260C 2006	=	77 0 0	µg/L	
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	3,0	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	<	1,0	µg/L	
BENZENE .	EPA 5030C 2003 + EPA 8260C 2006	. 2	1,5	hâyr	±0,8
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	=	4,5	` µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	±.	700	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	660	µg/L	and the second
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	Ξ	11000	µg/L	

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

numero di gradi di libertà >10.

Agenzia Regionale per la Protezione Ambientale della Toscana
Area Vasta Toscana Costa - Sett. Laboratorio
57126 Livorno Via Marradi, 114
tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8914

del 29/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8161

del 08/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 6076

Anno: 2017

Data registrazione: 23/08/2017

Pratica Nº: 39972

Campione di: BON#PM2(ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170823-00895-1

del: 23/08/2017

Data di prelievo: 23/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: Ll 23/08-10 °C

In Dipartimento: REFRIGERATO

Area Vasta Toscana Costa - Sett. Laboratorio Loc. Esecuz. Prova: IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 2	3/08/2017 Cor	nclusa il: 07/09/20	17	
Parametro	Metodo	Risultato	Unità di Misura	Incertezza
ALLUMINIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	< 20	μg/L	
CROMO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	< 1	µg/L	
MANGANESE	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 9600	µg/L	
FERRO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 43500	µg/L	
NICHEL	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 16	µg/L	
RAME	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	< 1	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8161

del 08/09/2017

Prova iniziata il: 2	3/08/2017	Conclusa il:	07/09/2017		
Parametro	Metodo	Risu	iltato	Unità di Misura	Incertezza
ZINCO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	77 E	15	µg/L	
ARSENICO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<u>-</u>	7,3	µg/L	
SELENIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	0,6	µg/L	
CADMIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,05	µg/L	
ANTIMONIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,5	µg/L	
PIOMBO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	1	µg/L	
BERILLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,05	µg/L	CO. pre-man
COBALTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	1,0	µg/L	
TALLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,05	µg/L	
ARGENTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	1	µg/L	
CROMO VI	MI/C/AVL 013 rev.0 2015	<	0,5	µg/L	

Note alla Prova:

l valori di incertezza estesa per i parametri Manganese e Ferro, superiori ai valori limite, non sono stati riportati in quanto superiori ai VL + 2U dove VL corrisponde al limite di: 50 μg/L per il Manganese e 200 μg/L per il Ferro.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA 1 - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8161

del 08/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8162

del 08/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Anno: 2017

Data registrazione: 23/08/2017

Pratica Nº: 39972

Campione di: BON#PM4(ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo Nº: 20170823-00895-1

del: 23/08/2017

Data di prelievo: 23/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

NUM.REGISTRO: 6077

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 23/08-10 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il:	23/08/2017	Conclusa il:	07/09/2	017	
Parametro	Metodo	Risu	Itato	Unità di Misura	Incertezza
ALLUMINIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	20	µg/L	
CROMO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	1	µg/L	
MANGANESE	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	3140	µg/L	
FERRO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125		1770	µg/L	
NICHEL	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	7,8	µg/L	Programme From
RAME	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	22	2,5	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8162

del 08/09/2017

Prova iniziata il:	23/08/2017	Conclusa il:	07/09/2017	· · · · · · · · · · · · · · · · · · ·	
Parametro	Metodo	Rist	Itato	Unità di Misura	Incertezza
ZINCO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	112	µg/L	
ARSENICO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	7,3	µg/L	
SELENIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,5	µg/L	
CADMIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,05	µg/L	
ANTIMONIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,5	µg/L	
PIOMBO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	3,7	µg/L	
BERILLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125		0,05	µg/L	ji.
COBALTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	,	1	µg/L	(62)
TALLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	0,05	µg/L	
ARGENTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	1	µg/L .	
CROMO VI	MI/C/AVL 013 rev.0 2015	<	0,5	µg/L	

Note alla Prova:

l valori di incertezza estesa per i parametri Manganese e Ferro, superiori ai valori limite, non sono stati riportati in quanto superiori ai VL + 2U dove VL corrisponde al limite di: 50 μg/L per il Manganese e 200 μg/L per il Ferro.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8162

del 08/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8163

del 08/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

NUM.REGISTRO: 6078

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Anno: 2017

Data registrazione: 23/08/2017

Pratica N°: 39972

Campione di: BON#IN3(ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170823-00895-1

del: 23/08/2017

Data di prelievo: 23/08/2017

Luogo di prelievo: LI175#PV ESSO 8457 VIA FIRENZE LIVORNO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 23/08-10 °C

In Dipartimento: REFRIGERATO

Area Vasta Toscana Costa - Sett. Laboratorio Loc. Esecuz. Prova: IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 23/0	08/2017 Cor	nclusa il: 07/09/201	7	
Parametro	Metodo	Risultato	Unità di Misura	Incertezza
ALLUMINIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 3520	µg/L	
СКОМО	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 1,0	µg/L	
MANGANESE	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 122900	µg/L	
FERRO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 31500	µg/L	
NICHEL	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 970	µg/L	
RAME	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	= 56	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8163

del 08/09/2017

Prova iniziata il: 23	/08/2017	Conclusa il:	07/09/20	17	**************************************
Parametro	Metodo	Risu	Itato	Unità di Misura	Incertezza
ZINCO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	249	hg/r	.,
ARSENICO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	1,2	µg/L	
SELENIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	1,4	µg/L	
CADMIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	0,36	µg/L	
ANTIMONIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	0,5	µg/L	
PIOMBO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125		11	µg/L	±2
BERILLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	i i	5,3	µg/L	±0,8
COBALTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	, 1, z	330	μg/L	×
TALLIO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	=	0,08	µg/L	
ARGENTO	APHA Standard Methods for Examination of Water and Wastewater 22nd ed. 2012, 3125	<	1	μg/L	
CROMO VI	MI/C/AVL 013 rev.0 2015	<	0,5	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA I - SEDE DI LIVORNO

Rapporto di Prova N. 2017-8163

del 08/09/2017

Note alla Prova:

L' incertezza è espressa come incertezza estesa , livello di probabilità p=0,95 , fattore di copertura k=2, numero di gradi di libertà >10.

I valori di incertezza estesa per i parametri Alluminio, Manganese, Ferro, Cobalto e Nichel, superiori ai valori limite, non sono stati riportati in quanto superiori ai VL + 2U dove VL corrisponde al limite di: 200 μ g/L per l'Alluminio, 50 μ g/L per il Manganese, 200 μ g/L per il Ferro, 50 μ g/L per il Cobalto e 20 μ g/L per il Nichel.

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

> Responsabile U.O. Dr. Carlo Cini

Foglio1

Allegato 1

Ai sensi Tab, 2 All. 5 Parte IV Titolo V D.L.gs, 152/06 per le acque sotterranee *Ai sensi della Circolare ISS del 12/09/2006 n. 45848 **Ai sensi del Parere ISS del 17/12/2002 n. 49759 IA 12 CSC < Conc < CSR Conc > CSR

						POC					POC			POC
Descrizione		CSC	CSR	PM1	PM1 ARPAT	PM2	PM3	PM3 ARPAT	PM4	PM5	PM6	PM6 APAT	PM7	IN3
Data campione		-		17 mag 17	19 apr 17									
CARBONATI	μg/l	//		<0,02		<0.02	<0.02		<0.02	<0.02	<0,02		<0.02	<0,02
CLORURI	μg/l	11		7600		74000	76000		74000	110000	59000		69000	71000
SOLFATI	μg/l	250000		140000		150000	85000	- 9	90000	88000	4400000	-	350000	2700000
SODIO	μg/l	- 11		69000		82000	54000		57000	65000	1500000		150000	690000
METALLI		-		+	-									
ARSENICO	µg/l	10		1,5		2	0,8		1	0.24	3.7		21	4
CROMO TOTALE	μg/l	50		0,37		0,2	0,43		<0,19	0,76	2,2		1.7	0.4
CROMO VI	μg/l	5		0,31		0.17	0.27		0,17	0.69	0,27		0.46	<0.13
FERRO	μg/l	200		5200		5900	16		3200	12	190		11000	120
MANGANESE	μg/l	50		3500		3200	460		3400	6.9	35000		5800	50000
NICHEL.	μg/l	20		4,7		11	10		5,3	2,5	230		10	160
PIOMBO	μg/l	10		0,5		0,45	0,22		0,28	0,16	0,43		1,4	13
IDROCARBURI TOTALI	μg/l	350	1700	<7,3	690	<7,3	75	160	<7,3	<7,3	93	2400	680	1600
IDROCARBURI AROMATICI (BTEX)	-												-10	
BENZENE	μg/l	1	182	0.47	0.7	9.3	0.046	< 0.1	0.11	< 0.043	0.74	1.1	96	3.4
ETILBENZENE	μg/l	50	534	<0.028	< 0.1	0.088	< 0.028	< 0.1	<0.028	<0.028	0,28	0.2	14	2000
STIRENE	μg/l	25	25	<0.045	< 0,1	<0.045	<0.045	< 0.1	<0.045	< 0.045	<0.045	< 0.1	< 0.045	3
TOLUENE	μg/l	15	2500	<0,041	< 0.1	0.15	< 0.041	< 0.1	<0.041	<0.041	0.11	0.1	1.3	11
p-XILENE	µg/l	10	6090	<0,026	< 0,1	0,2	<0.026	< 0.1	<0,026	<0.026	0,082	0.3	6,4	2500
MTBE	µg/l	40*	12600	3.1	4,5	6.7	2,8	4.5	<0.097	0,097	17	5.3	49	0,97
ETBE	μg/l	40*						73						
ALIFATICI CLORURATI CANCEROGI														
CLOROMETANO	µg/l	1,5						1.6				200		

Foglio1

					POC	POC					POC		POC	POC
Descrizione		CSC	CSR	PM1	PM2	PM2 ARPAT	PM3	PM3 ARPAT	PM4	PM5	PM6	PM7	IN3	IN3 ARPA
Data campione				11 ago 17										
CARBONATI	µg/I	"		<1000	<1000		<1000		<1000	<1000	<1000	<1000	<1000	
CLORURI	μg/l	//		32000	37000		47000		48000	69000	49000	21000	25000	
SOLFATI	µg/l	250000		890000	1500000		72000		49000	58000	6100000	3900000	3700000	
SODIO	µg/l	H		2222000	455600		56740		59320	56550	2272000	3062000	664900	
METALLI														-
ALLUMINIO	µg/l	200				51		30						25700
ANTIMONIO	µg/l	5				< 0.5		< 0.5						0.7
ARGENTO	µg/l	10				<1		3.2						< 1
ARSENICO	μg/l	10		1.22	3.74	8.2	3.51	1.5	4,78	0,211	4.09	18.8	8,09	18
BERILLIO	µg/l	4				< 0.05		< 0.05						10
CADMIO	µg/l	5				0,07		0.12						4.5
COBALTO	μg/l	50				3.4		1.4						243
CROMO TOTALE	μg/l	50		0,47	0,446	< 1	0,45	< 1	0,392	3,54	2,08	0,136	8.08	22
CROMO VI	μg/l	. 5		<0,5	<0,5	< 0.5	<0,5	< 0.5	<0,5	<0,5	<0,5	<0,5	<0,5	< 0,5
FERRO	μg/l	200		15137	49646	41300	412	357	2058	35,3	74.4	85385	1007	53410
MANGANESE	µg/l	50		6882	12353	9870	772	568	3581	5,3	110117,3	58489	135745,5	50700
NICHEL	μg/l	20		3,8	14,3	23	6,2	6.5	7,5	1,7	802	54,5	1007	700
PIOMBO	μg/l	10		< 1,0	< 1,0	< 1	< 1,0	< 1	1	<1	3,9	2,1	28.1	34
RAME	μg/l	1000				1.6		1.7						189
SELENIO	µg/l	10				0.5		1,5						34
TALLIO	µg/l	2				< 0.05		< 0.05						0.1
ZINCO	μg/l	3000				23		59						354
IDROCARBURI TOTALI	µg/l	350	1700	4410	1160	420	230	300	2410	< 35	552	6840	13100	3600
IDROCARBURI AROMATICI (BTEX)														
BENZENE	μg/l	1	182	<0.1	< 0.1	0.9	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	109	< 0.1	0.3
ETILBENZENE	μg/l	50	534	1.4	1.25	0.7	0.17	< 0.1	0.75	0.11	4.58	22.5	855	100
STIRENE	µg/I	25	25	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	Y
TOLUENE	µg/l	15	2500	19.1	< 0.1	< 0.1	< 0.1	< 0.1	3,59	0,19	9,75	27.7	48,3	0,3
p-XILENE	μg/l	10	6090	0,612	3,96	2.8	0,806	0.7	2,13	0,12	2,86	6.7	698	42
														Y
MTBE	μд∕І	40*	12600	516	140	8.6	192	1.9	200	<1	139	1570	1360	< 1
ETBE	μg/l	40*				9.1		7.3						< 1

Foglio1

				222	POC	POC			7		POC		POC	POC
Descrizione		CSC	CSR	PM1	PM2	PM2 ARPAT	PM3	PM4	PM4 ARPAT	PM5	PM6	PM7	IN3	IN3 ARPAI
Data campione				23 ago 17										
CARBONATI	μg/l	- //		<1000	<1000		<1000	<1000		<1000	<1000	<1000	<1000	
CLORURI	µg/l	- //		50000	15000		59000	50000		74000	4900	16000	17000	
SOLFATI	µg/l	250000		410000	550000		130000	56000		70000	690000	870000	1600000	
SODIO	µg/l	11		131000	490000		65600	57000		61000	2522000	638000	933000	
METALLI				_										
ALLUMINIO	µg/l	200				< 20			< 20					3520
ANTIMONIO	µg/l	5				< 0.5			< 0.5					0.5
ARGENTO	µg/l	10				< 1			< 1					< 1
ARSENICO	µg/l	10		1,22	3.74	7.3	3.51	4,78	7.3	0,211	4.09	18.8	8,09	1.2
BERILLIO	μg/l	4				< 0.05	7,77		< 0.05		1,00	4010		5.3
CADMIO	µg/l	5				< 0.05			< 0.05					0.36
COBALTO	µg/l	50				1			<1					330
CROMO TOTALE	μg/l	50		0,47	0.446	< 1	0.45	0.392	< 1	3,54	2.08	0.136	8.08	1
CROMO VI	μg/l	5		<0,5	<0,5	< 0.5	<0,5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5
FERRO	µg/l	200		15137	49646	43500	412	2058	1770	35,3	74.4	85385	1007	31500
MANGANESE	μg/l	50		6882	12353	9600	772	3581	3140	5,3	110117,3	58489	135745,5	122900
NICHEL	μg/l	20		3,8	14,3	16	6.2	7,5	7.8	1,7	802	54,5	1007	970
PIOMBO	μg/l	10		< 1,0	< 1,0	< 1	< 1,0	1	3.7	<1	3,9	2,1	28,1	11
RAME	μg/l	1000				< 1			2.5					56
SELENIO	μg/i	10				0.6			< 0.5					1,4
TALLIO	μg/l	2				< 0.05			< 0.05					0,08
ZINCO	µg/l	3000				15			112					249
IDROCARBURI TOTALI	μg/l	350	1700	4410	1160	580	230	2410	900	< 35	552	6840	13100	11000
IDROCARBURI AROMATICI (BTEX)				_								_		
BENZENE	μg/l	1 '	182	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	109	< 0.1	1.5
ETILBENZENE	μg/l	50	534	1.4	1.25	1.5	0.17	0.75	0.5	0.11	4.58	22.5	855	700
STIRENE	μg/l	25	25	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
TOLUENE	µg/l	15	2500	19,1	< 0,1	<0.1	< 0.1	3,59	<0.1	0,19	9,75	27,7	48,3	4.5
p-XILENE	μg/l	10	6090	0,612	3,96	3.5	0,806	2,13	2.5	0,12	2,86	6,7	698	660
MTBE	μgЛ	40*	12600	516	140	6,9	192	200	1.6	<1	139	1570	1360	3
ETBE	µg/l	40*				6.6			<1					~1
ALIFATICI CLORURATI CANCEROGI											_			
CLOROMETANO	µg/l	1.5		_	_	2.2	_		-					7700

Direzione Ambiente ed Energia SETTORE Bonifiche ed Autorizzazioni rifiuti

Via di Novoli, 26 50127 Firenze Fax 055/4383389

Data

Prot. n. da citare nella risposta

Allegati

Risposta al foglio del

n.

Oggetto: Sito LI175 Distributore Petrolifera Adriatica EX ESSO PV n. 8457 Via Firenze n. 18, Comune di Livorno. Variante al Progetto Unico di Bonifica. Parere di competenza.

al Comune di Livorno – Servizio Ambiente c.a.: G. Belli

La scrivente Amministrazione Regionale,

visto il documento "Variante al Progetto Unico di Bonifica" del luglio 2018, trasmesso dalla società Aecom per conto di Petrolifera Adriatica con nota del 6 settembre 2018 ricevuta in atti regionali prot. n. 420712 del 6/09/2018, relativamente al sito di cui all'oggetto, di prossima valutazione nella conferenza di servizi convocata presso il Comune di Livorno per il giorno 18 ottobre 2018,

valutato che la variante propone di realizzare un Piano di Indagine Integrativo, consistente nella realizzazione di n. 3 nuovi piezometri di cui n. 2 (PM10 e PM11) ubicati in posizione di valle idrogeologia che andranno a costituire i nuovi punti di conformità (POC) per il sito in esame, ed un Intervento di finissaggio del risanamento della falda del sito, attraverso l'iniezione di acqua ossigenata in falda al fine di accelerare i processi di depurazione,

considerato che, successivamente all'iniezione in falda del composto ossigenante, l'avanzamento della bonifica sarà verificato attraverso il monitoraggio dei parametri chimico-fisici ed il campionamento periodico delle acque di falda dai pozzi di monitoraggio presenti in sito per un periodo di circa 12 mesi,

Preso atto che il tempo previsto per il raggiungimento degli obiettivi di bonifica viene stimato in circa 12 mesi, suscettibile di aggiornamento sulla base dei risultati dei monitoraggi,

RITIENE che non vi siano elementi ostativi alla realizzazione degli interventi proposti, per quanto di competenza.

Si ricorda che ai fini del collaudo del buon esito degli interventi di bonifica della falda, si dovrà far riferimento alle indicazioni di Arpat.

Cordiali saluti

Il Dirigente Responsabile (Dott. Ing. Andrea Rafanelli)

2. PUNTO ALL'ORDINE DEL GIORNO:

Bonifica Area ex P.V. ESSO 8456 Viale Petrarca (COD. SISBON LI1068):

"Trasmissione esiti analitici acque sotterranee e gas interstiziali"

Alle ore 10,15 viene discusso il documento "Trasmissione esiti analitici acque sotterranee e gas interstiziali" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a. ed acquisito al prot. 87278 in data 09.07.2018.

Considerato che il Comune di Livorno ha richiesto al Dip. Prov.le ARPAT di predisporre specifico contributo istruttorio per il documento "Progetto Unico di Bonifica" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a. ed acquisito al prot. 118129 in data 25.09.2018 in data susseguente a quella di convocazione della C.d.S., il documento viene portato all'ordine del giorno e discusso dalla odierna Conferenza dei Servizi.

La Conferenza dei Servizi del 18 ottobre 2018

Visto il documento "Trasmissione esiti analitici acque sotterranee e gas interstiziali" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a.;

Visto il documento "Progetto Unico di Bonifica" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a.;

Tenuto conto del contributo tecnico di ARPAT prot. 71768 del 11.10.2018 (in Atti n° 126369 del 11.10.2018) parte integrante del presente verbale;

Tenuto conto del contributo tecnico della Regione Toscana prot. 458453 del 16.10.2018 (in Atti n° 128159 del 16.10.2018) parte integrante del presente verbale;

Tenuto conto degli esiti della discussione odierna.

concorda quanto segue:

- 1. di prendere atto del documento "Trasmissione esiti analitici acque sotterranee e gas interstiziali" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a.;
- 2. di approvare ai sensi della normativa vigente in materia il "Progetto Unico di Bonifica" con le prescrizioni di cui al contributo istruttorio di ARPAT;
- 3. considerato che l'Analisi del Rischio ha evidenziato l'esclusione del suolo profondo non conforme per C>12 come sorgente secondaria, il rispetto delle C.S.C. presso i POCs e l'assenza di rischio associato alla contaminazione della matrice acque sotterranee per i lavoratori e per i residenti, al fine di confermare i risultati emersi dal monitoraggio delle acque sotterranee si richiede alla Ditta un monitoraggio di collaudo post A.d.R. ricercando i parametri C totali, aromatici, MtBE e EtBE con la seguente tempistica: mese corrente dopo 3 mesi dopo 6 mesi;
- 4. di richiedere alla Ditta un monitoraggio del soil gas ricercando i parametri già oggetto delle precedenti campagne di monitoraggio nel periodo di morbida in base alla tecnica più significativa per le condizioni di soggiacenza corrispondenti;
- 5. richiedere alla Ditta, in accordo a quanto previsto dalla DGRT 301/2010, di comunicare ai soggetti interessati, ai sensi della D.G.R.T. 301/2010, l'inizio delle attività con un preavviso di almeno 10 giorni lavorativi;
- 6. in accordo a quanto previsto dalla DGRT 301/2010, compilare la modulistica relativa all'iter amministrativo ed il corrispondente report analitico in formato standard sul portale SISBON (http://sira.arpat.toscana.it/sira/sisbon.html).

Partecipano alla Conferenza dei Servizi l'Ing. Daniela Reale ed il Dott. Luca Pecchia in rappresentanza della Soc. AECOM URS Italia S.p.a.

1

The My

[&]quot;Progetto Unico di Bonifica"

ARPAT - AREA VASTA COSTA - Dipartimento di Livorno

Via Marradi, 114 - 57126 - Livorno

N. Prot: Vedi segnatura informatica

cl.: LI.01.23.07/133.10, LI.01.23.07/133.11 del

a mezzo: PEC

a Comune di Livorno
Dipartimento 1 – Area Tecnica
Settore Ambiente
comune.livorno@postacert.toscana.it

p.c. Regione Toscana
Direzione Ambiente ed Energia
Settore Bonifiche e aut. Rifiuti
regionetoscana@postacert.toscana.it

Oggetto: LI-1068 – PV Petroltecnica Adriatica 8456, ubicato in V.le Petrarca nel Comune di Livorno.

Parere su Trasmissione esiti analitici acque sotterranee e gas interstiziali e Progetto Unico di Bonifica

Questo parere è espresso in risposta alla convocazione di *Conferenza dei Servizi* (CdS) da parte del Comune di Livorno (agli atti di questo Ufficio con Prot. n. 65563 del 19.09.2018). In tale sede saranno discussi anche i documenti in oggetto inviati via PEC, rispettivamente, dalla società *AECOM URS Italia S.p.A.* (di seguito AECOM), in nome e per conto di *Petroltecnica Adriatica S.p.A.* (di seguito Petroltecnica) il 5.07.2018 (in archivio presso questi uffici con Prot. n° 48917 del 06/07/2018), e da Petroltecnica il 25.09.2018 (in archivio presso questi uffici con Prot. n° 66970 del 25.09.2018). Premesso che:

- il quadro normativo di riferimento è D.Lgs. 152/2006 e s.m.i.; L.R. 30/2006; D.Lgs. 4/2008;
 D.G.R.T. 301/2010; DM 31/2015;
- per quanto riguarda l'iter amministrativo relativo al sito in oggetto si rimanda ai precedenti pareri emessi da questo Dipartimento.

Considerato che:

Analisi del Laboratorio di Parte (LdP):

- nel giugno 2017 AECOM ha realizzato le indagini integrative previste dal Progetto di Bonifica di Fase 1 e che sono consistite nella realizzazione di 3 sondaggio continuo continuo, attrezzatipoi a piezometro. Le analisi effettuate sulle varie aliquote hanno previsto la determinazione dei parametri Idrocarburi C<12, C>12, aromatici, MtBE, EtBE, Pb Tetraetile e Pb, hanno evidenziato la piena conformità;
- ♦ le analisi effettuate dal LdP sulla matrice acque sotterranee tra il 24 maggio ed il 18 giugno 2018, ricercando i parametri Idrocarburi totali, aromatici, MtBE, EtBE, Pb Tetraetile e Pb, hanno evidenziato (All. 1) superamenti delle CSC per i parametri Idrocarburi totali, Benzene e Toluene e superamenti dei limiti ISS per i parametri MtBE e EtBE;
- ◆ le analisi effettuate dal LdP sulla matrice soil gas sono state effettuate nei giorni del 20.07.2017 e 18:06.2018. I risultati di più alta concentrazione, che non hanno valori limite di riferimento, sono stati utilizzati nell'AdR per la valutazione dei rischi per la salute umana.

Pagina 1 di 3

tel. 055.32061 - fax 055.3206324 - p.iva 04686190481 - www.arpat.toscana.it - per informazioni: urp@arpat.toscana.it per comunicazioni ufficiali PEC: arpat.protocollo@postacert.toscana.it - (accetta solo PEC),

ARPAT tratta i dati come da Reg.UE 679/2016. Per info su modalità e diritti degli interessati: www.arpat.toscana.it/utilita/privacy

Modello Concettuale (MC):

Il MC è stato ricostruito in base agli esiti della caratterizzazio e per la successiva elaborazione di Analisi di Rischio (AdR) attraverso l'utilizzo del software Risk-net 2.1;

- ◆ sorgenti secondarie di contaminazione come SSC sono state considerate quelle emerse nel corso delle varie indagini di caratterizzazione e riassumibili in:
 - ◆ suolo profondo per il parametro Idrocarburi C>12;
 - ◆ acque sotterranee per i parametri Idrocarburi totali, Benzene, Toluene, p-Xilene, MtNE ed EtBE:
- ♦ le vie di migrazione e di esposizione vista la completa pavimentazione del sito, che esclude le vie di esposizione dirette, e vista la non volatilizzazione degli Idrocarburi C>12, l'unica via di esposizione possibile è la volatilizzazione dei VOCs, per una esposizione sia indoor che outdoor. In base alla suddivisione in poligoni di Thiessen che evidenziano la non conformità in prossimità del confine, sono state considerate sia un esposizione onsite (lavoratori) che offsite (residenti);
- ◆ come bersagli come in parte indicato nel punto precedente i bersagli sono:
 - lavoratori (onsite);
 - residenti (offsite);
 - ♦ la risorsa idrica:
- come parametri di esposizione parametri di default;
- ◆ caratteristiche del sito per le caratteristiche del sito sono state considerati in parte i parametri di dafault del programma ed in parte in base a dati sito specifici;
- ◆ POCs come punti di conformità sono stati considerati i piezometri sotto gradiente idraulico (MW2 ed MW8).

Risultati dell'AdR:

- ◆ l'AdR in modalità invera (come previsto dalla legge) ha evidenziato CSR cumulative < 1 x 10⁻⁵ (rischio cancerogeno accettabile) e un HI cumulativo > 1 (rischio tossico non accettabile);
- ♦ in base a quanto previsto dal DM 31/2015, per ridurre la sovrastima del rischio associata alle AdR di Livelo 2, è stata effettuata una nuova AdR in modalità diretta, utilizzando come dati di input le massime concentrazioni degli inquinanti misurati nelle 2 campagne di soil gas. I risultati hanno evidenziato CSR < 10⁻⁵ (rischio cancerogeno accettabile) ed un HI < 1 (rischio tossico accettabile).
 </p>

Le analisi di confronto effettuate da ARPAT sulle acque sotterranee (All. 1 e All. 2) nei giorni 24.05.2017 (MW2 ed MW4), 21.07.2017 (MW6 e SB2) e 18.04.2018 (MW2, MW6 e SB2), ricercando i parametri Idrocarburi totali, aromatici, MtBE e EtBE, hanno evidenziato concentrazioni superiori alle CSC, ma inferiori alle CSR per i parametri Idrocarburi totali, MtBE ed EtBE.

Nel corso del monitoraggio è stato evidenziato anche un superamento delle CSC per il parametro Tetracloroetilene pressi i piezometri MW6 e SB2.

Conclusioni

In base ai documenti analizzati da questo Dipartimento ed alle analisi di confronto effettuate da ARPAT si evidenzia che:

- si concorda con i risultati ottenuti dal LdP;
- > si condividono i risultati dell'AdR ottenuti dal consulente, che hanno evidenziato:
 - l'esclusione del suolo profondo non conforme per Idrocarburi C>12 come sorgente secondaria in funzione della non volatilità degli inquinanti stessi;
 - il rispetto delle CSC presso i POCs (MW4 e MW8);
 - l'assenza di rischio (cancerogeno e tossico) associato alla contaminazione della matrice acque sotterranee per i lavoratori (on-site) e per residenti (off-site), in base all'AdR diretta effettuata a partire dalle misure di soil gas;
- ➤ al fine di confermare i risultati emersi nel corso del monitoraggio delle acque sotterranee oggetto di questo parere, propedeutici alla realizzazione dell'AdR, e come realizzato per altri siti ricadenti nel territorio di competenza di questo Dipartimento, si propone di effettuare un monitoraggio di collaudo post AdR ricercando i parametri Idrocarburi totali, aromatici, MtBE ed EtBE, con la seguente tempistica: nel mese corrente; dopo 3 mesi; dopo 6 mesi;
- ➢ i risultati dell'AdR sono stati ottenuti, in base a quanto previsto dal DM 31/2015, in modalità diretta utilizzando come dati di input le massime concentrazioni degli inquinanti misurate nel corso delle campagne di soil gas effettuate il 20.07.2017 ed il 15.06.2018. Viste le linee guida in materia di soil gas che prevedono il monitoraggio di tale matrice in maniera rappresentativa per l'intero anno, si propone di:
 - realizzare, in regime di morbida ed in base alla tecnica più significativa per le condizioni di soggiacenza corrispondenti, una nuova campagna di rilevamento del soil gas ricercando i parametri oggetto delle precedenti campagne di monitoraggio.

Inoltre si ricorda che:

- ➢ in base a quanto previsto dalla DGRT 301/2010 il soggetto obbligato comunica alla struttura ARPAT, con preavviso non inferiore a dieci giorni lavorativi, la data ed il luogo di effettuazione delle indagini;
- ➢ per il sito con codice SISBON LI-1068, in accordo a quanto previsto dal DGRT 301/10, è necessario compilare sul portale SISBON della Regione Toscana (http://sira.arpat.toscana.it/sira/sisbon.html) la modulistica relativa alla corrispondente fase tecnico amministrativa ed i risultati analitici in formato standard.

Cordiali saluti

Livorno 11/10/2018

La Responsabile del Dipartimento ARPAT di Livorno

Dr Chim, Lucia Rocchi1

Elenco allegati:

- 1. Tabella di confronto delle analisi delle acque sotterranee.
- 2. Rapporti di Prova (2017-5022, 2017-5023, 2017-7894, 2017-7895, 2018-5013, 2018-5014 e 2018-5015).
- 1 Documento informatico sottoscritto con firma digitale ai sensi del D.Lgs 82/2005. L'originale informatico è stato predisposto e conservato presso ARPAT in conformità alle regole tecniche di cui all'art. 71 del D.Lgs 82/2005. Nella copia analogica la sottoscrizione con firma autografa è sostituita dall'indicazione a stampa del nominativo del soggetto responsabile secondo le disposizioni di cui all'art. 3 del D.Lgs 39/1993

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 fax0555305615 tel_05532061

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5013

del 08/06/2018

Richiedente: ARPAT - DIP. LIVORNO

2705

P.IVA: 04686190481

NUM.REGISTRO:

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Anno: 2018

Data registrazione: 18/04/2018

Pratica N°: 39972

Campione di: BON#MW2 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo Nº: 20180418-00347-2

del: 18/04/2018

Data di prelievo: 18/04/2018

Luogo di prelievo: LI1068#PV ESSO 8456 V.LE PETRARCA -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: Ll 18/04 12 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

08/06/2018 Prova iniziata il: 24/04/2018 Conclusa il: Unità di Misura Incertezza Risultato **Parametro** Metodo EPA 5030C 2003 + EPA 96 µg/₹ METIL-TER-BUTIL-ETERE 8260C 2006 (MTBE) 2600 µg/L EPA 5030C 2003 + EPA ETIL-TER-BUTIL-ETERE (ETBE) 8260C 2006 EPA 5030C 2003 + EPA 290 μg/L BENZENE 8260C 2006 EPA 5030C 2003 + EPA 1,2 µg/L **TOLUENE** 8260C 2006 1,1 µg/L EPA 5030C 2003 + EPA ETILBENZENE 8260C 2006 EPA 5030C 2003 + EPA 0,8 µg/Ł META-XILENE+PARA-XILENE 8260C 2006 EPA 5030C 2003 + EPA 0,1 µg/L STIRENE 8260C 2006 IDROCARBURI TOTALI (espressi ISPRA Manuali e linee guida 2300 μg/L come N-ESANO) 123/2015 A+B

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa
U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5013

del 08/06/2018

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Dr. Paelo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 fax0555305615 tel. 05532061

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5014

del 08/06/2018

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO:

2706

Anno: 2018

Data registrazione: 18/04/2018

Pratica Nº: 39972

Campione di: BON#MW6 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo Nº: 20180418-00347-2

del: 18/04/2018

Data di prelievo: 18/04/2018

Luogo di prelievo: LI1068#PV ESSO 8456 V.LE PETRARCA -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: Ll 18/04 12 °C

In Dipartimento: REFRIGERATO

Area Vasta Toscana Costa - Sett. Laboratorio Loc. Esecuz. Prova:

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO Conclusa il: 08/06/2018 Prova iniziata il: 24/04/2018

Prova iniziata II. 24/04/2010)	Conciusa II.	00/00/2010		20230-1
Parametro	Metodo		ıltato	Unità di Misura	Incertezza
TETRACLOROETILENE	EPA 5030C 2003 + EPA 8260C 2006	=	1,7	µg/L	±0,9
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	<	1,0	µg/L	501
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	· · · · · · · · · · · · · · · · · · ·	1,0	μg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	. =	0,1	μg/L	
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	hā/r	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	μg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	<\	0,1	μg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006		0,1	μg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	<	50	μg/L	

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

numero di gradi di libertà >10.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5014

del 08/06/2018

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5015

del 08/06/2018

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

NUM.REGISTRO: 2707

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Anno: 2018

Data registrazione: 18/04/2018

Pratica N°: 39972

Campione di: BON#SB2 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo Nº: 20180418-00347-2

del: 18/04/2018

Data di prelievo: 18/04/2018

Luogo di prelievo: LI1068#PV ESSO 8456 V.LE PETRARCA -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 18/04 12 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 24/04/201	8	Conclusa il:	08/06/2	018	
Parametro	Metodo		Itato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	***	72	μg/L	±36
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	=	870	µg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,5	µg/L	±0,3
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,3	µg/L	· ·
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	1,0	μg/L	_
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	" â
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	950	µg/L	V = 0 V

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

numero di gradi di libertà >10.

Agenzia Regionale per la Protezione Ambientale della Toscana
Area Vasta Toscana Costa - Sett. Laboratorio
57126 Livorno Via Marradi, 114
tel. 05532061 fax0555305615

Unità Operativa
U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5015

del 08/06/2018

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Dr. Paolo Altemura

Dr. Willewa

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7894

del 07/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 5591

Anno: 2017

Data registrazione: 21/07/2017

Pratica N°: 39972

Campione di: BON#MW6 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170721-00455-1

del: 21/07/2017

Data di prelievo: 21/07/2017

Data di consegna: 21/07/2017

Luogo di prelievo: LI1068#PV ESSO 8456 V.LE PETRARCA -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: Ll 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 25/07/2013	7	Conclusa il:	29/08/20	17	
Parametro	Metodo	Ris	ultato	Unità di Misura	Incertezza
TETRACLOROETILENE	EPA 5030C 2003 + EPA 8260C 2006	=	2,7	h 3 /L	
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	. <	1,0	μg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	=	3,8	μg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	. <	0,1	µg/L.	
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,4	µg/L	·
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	12
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	, <	50	μg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana
Area Vasta Toscana Costa - Sett. Laboratorio
57126 Livomo Via Marradi, 114
tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7894

del 07/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 fax0555305615 tel. 05532061

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7895

del 07/09/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

NUM.REGISTRO:

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

5592

Anno: 2017

Data registrazione: 21/07/2017

Pratica N°: 39972

Campione di: BON#SB2 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20170721-00455-1

del: 21/07/2017 Data di prelievo: 21/07/2017

Data di consegna: 21/07/2017

Luogo di prelievo: LI1068#PV ESSO 8456 V.LE PETRARCA -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: Ll 21/07 15 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 25/07/2017 Conclusa il: 29/08/2017 Risultato Unità di Misura Incertezza Metodo **Parametro** TETRACLOROETILENE EPA 5030C 2003 + EPA 1,7 μg/L ±0,9 8260C 2006 EPA 5030C 2003 + EPA 34 ±17 METIL-TER-BUTIL-ETERE µg/L 8260C 2006 EPA 5030C 2003 + EPA 550 ETIL-TER-BUTIL-ETERE (ETBE) μg/L 8260C 2006 EPA 5030C 2003 + EPA 3,2 µg/L BENZENE 8260C 2006 0,1 μg/L TOLUENE EPA 5030C 2003 + EPA 8260C 2006 EPA 5030C 2003 + EPA 0,1 μg/L **ETILBENZENE** 8260C 2006 EPA 5030C 2003 + EPA 0,1 µg/L PARA-XILENE 8260C 2006 STIRENE EPA 5030C 2003 + EPA 0,1 µg/L 8260C 2006 ISPRA Manuali e linee guida 2000 µg/L IDROCARBURI TOTALI (espressi 123/2015 A+B come N-ESANO)

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

numero di gradi di libertà >10.

Agenzia Regionale per la Protezione Ambientale della Toscana
Area Vasta Toscana Costa - Sett. Laboratorio
57126 Livorno Via Marradi, 114
tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-7895

del 07/09/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-5022

del 23/06/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 3558

Anno: 2017

Data registrazione: 24/05/2017

Pratica N°: 39972

Campione di: BON#MW2 (ACQUA PIEZOMETRICA)

Prelevato da: PETROLTECNICA

Verb. Prelievo N°: 20170522-00347-1

del: 24/05/2017

Data di prelievo: 24/05/2017

Luogo di prelievo: LI1068#PV ESSO 8456 V.LE PETRARCA -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 24/05 9 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 25/05/2017	7	Conclusa il:	23/06	/2017			
arametro	Metodo	Rist	iltato		Unità di Misura	Incertezza	
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	140		µg/L		
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	=	2900		µg/L		
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	=	390	4	μg/L		
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	¹ =	2,5	4	µg/L		
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1		μg/L		
META-XILENE+PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	=	0,9		µg/L	112022	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1		μg/L		
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	2000		µg/L		

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa
U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-5022

del 23/06/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Dr. Paolo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-5023

del 23/06/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 3560

Anno: 2017

Data registrazione: 24/05/2017

Pratica N°: 39972

Campione di: BON#MW4 (ACQUA PIEZOMETRICA) Prelevato da: PETROLTECNICA

(i) (ii) (ii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii)

Verb. Prelievo N°: 20170522-00347-1

del: 24/05/2017

Data di prelievo: 24/05/2017

Luogo di prelievo: Li1068#PV ESSO 8456 V.LE PETRARCA -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 24/05 9 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 25/05/2017		Conclusa	il:	23/	06/2017		
Parametro	Metodo	Risultato				Unità di Misura	Incertezza
TETRACLOROETILENE	EPA 5030C 2003 + EPA 8260C 2006		=	18		µg/L	AA
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006		<	1,0	a . :	μg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006		=	0,4		µg/L	
TOLUENE 1	EPA 5030C 2003 + EPA 8260C 2006		<	0,1		µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1		µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006		<	0,1		µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	3	<	0,1	1 ²	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	110	<	50		µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana
Area Vasta Toscana Costa - Sett. Laboratorio
57126 Livomo Via Marradi, 114
tel. 05532061 - fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-5023

del 23/06/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Allegato 1

Ai sehsi Tab., 2 All. 5 Parte IV Titolo V D.Lgs., 152/06 per le acque sotterrance *Ai sensi della Circolare ISS del 12/09/2006

> CSC < Conc < CSR Conc > CSR

								POC	POC	
Descrizione		csc	CSR	MW1	MW2	MW2 ARPAT	MW3	MW4	MW4 ARPAT	MW5
Data campione				24 mag 17	Z4 mag 17	24 mag 17				
рН		II								
CONDUCIBILITA*	μS/cn	(25°C)							4	
METALLI	_		-							
PIOMBO	µg/l	10		4,1	1,8		< 1,0	< 1,0		< 1,0
IDROCARBURI TOTALI	µg/l	350	8100	< 35	1840	2000	< 35	< 35	< 50	< 35
IDROCARBURI AROMATICI (BTEX)	-				_				-	-
BENZENE	µg/l	1	798	0,121	187	390	< 0,1	0,415	0.4	0,234
ETILBENZENE	µg/i	50		< 0,1	< 0,1	< 0.1	< 0.3	< 0.1	< D:1	< 0,1
STIRENE	µg/l	25		< 0,1	< 0,1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1
TOLUENE	µg/I	15	47	50	< 0,1	2.5	< 0,1	< 0,1	< 0.1	< 0,1
p-XILENE	μg/l	10	37	< 0,1	< 0,1	0.4	< 0,1	< 0,1	< 0.1	< 0,1
Pb TETRAETILE	μg/Ι	0,1		< 0,01	< D,D1		< 0,01	< 0,01	-	< 0,01
MTBE	µд/ї	40*	653	7,18	351	140	22,3	< 1,0	18	< 1.0
ETBE	µg/ī	40*	6000	11,2	2930	2900	142	3,18	4.1	1,43

						POC					POC		
	CSC	CSR	MW1	MW2	MW3	MW4	MW5	MW6	MW6 ARPAT	MW7	MW8	SB2	\$82 ARPAT
			21 Jug 17	21 lug 17	21 Jug 17	21 lug 17	21 lug 17	21 Jug 17	21 lug 17	21 Jug 17	21 Jug 17	21 Jug 17	21 lug 17
	- //												-
µS/cn	n (25°C)												
1	_									-		-	
µg/l	10		2,7	< 1,0	< 1,0	< 1,0	< 1,0	1.1		< 1,0	< 1,0	< 1,0	
µg/l	350	8100	< 35	1610	< 35	< 35	< 35	< 35	450	297	40,2	117	2000
-						_							
µg/i	1	798	< 0,1	0,616	< 0,1	< 0.1	0.266	0.2	<0.1	0.496	< 0.1	< 0.1	3.2
µg/l	50		< 0,1	< 0.1	< 0,1		< 0.1	< 0.1	<0.1				<0.1
µg/l	25		< 0,1	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1				<0.1
µg/l		47	< 0,1	0,107	< 0,1	< 0.1	< 0.1	< 0.1	0.4				<0.1
µg/I	10	37	< 0,1	< 0,1	< 0,1	< 0,1	< 0.1	< 0,1	<0.1	< 0,1	< 0,1	< 0,1	<0.1
µg/l	0,1		< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0.01		< 0,01	< 0,01	< 0,01	
µg/i	40°	653	8,06	23,8	< 1.0	< 1,0	< 1,0	< 1,0	<1	7,12	< 1,0	22,5	34
идл -	40°	6000	12,4	362	31,7	1,43	3,3	3,8	3.3	124	54,6	1 190	550
+												1	
µg/l	1,1						_		2.7				1,7
	µS/cr µg/i µg/i µg/i µg/i µg/i µg/i µg/i µg/i	увлем (ДБСС) 1997 10 1997 380 1997 50 1997 50 1997 10 1997 10 1997 40 1997 40	- /// - ///	рублем (25°C) рубле	21 lug 17 23 40,1		CSC CSR MW1 MW2 MW3 MW4	CSC CSR MW1 MW2 MW3 MW4 MW5	CSC CSR MW1 MW2 MW3 MW4 MW5 MW6 MW6	CSC CSR MW1 MW2 MW3 MW4 MW5 MW6 MW6 AFFAT	CSC CSR MW1 MW2 MW3 MW4 MW5 MW6 MW6 ARPAT MW7	CSC CSR MW1 MW2 MW3 MW4 MW5 MW6 MW6 ARPAT MW7 MW8 MW8 APPAT MW7 APPAT MW7 APPAT APPA	CSC CSR MW1 MW2 MW3 MW4 MW5 MW6 MW6 ARPAT MW7 MW8 S82

								POC					POC		
Descrizione	1	csc	CSR	MVV1	MW2	MW2 ARPAT	MW3	MW4	MW5	MW6	MW6 ARPAT	MW7	MW8	SB2	SB2 ARPAT
Data campione				18 apr 18	16 apr 18										
pH											1000				
CONDUCIBILITA:	μS/cn	n (25°C)					7								
METALLI	1	_	_	-											
PIOMBO	µg/i	10		< 1,0	< 1,0		< 1,0	< 1,0	< 1,0	< 1,0		< 1,0	< 1,0	< 1,0	
IDROCARBURI TOTALI	µg/l	350	8100	38,8	1950	2300	60,8	35,4	< 35,0	< 35,0	< 50	175	< 35,0	388	950
IDROCARBURI AROMATICI (BTEX)	-		_	-	_						1				
BENZENE	µg/i	1	798	< 0,1	376	290	< 0,1	< 0.1	< 0,1	< 0.1	0.4	< 0.1	< 0.1	187	0.5
ETILBENZENE	µg/l	50		< 1,0	< 1.0	1.1	< 1.0	< 1.0	< 1,0	< 1.0	< 0.1	< 1.0	< 1,0	< 1,0	0.3
STIRENE	µg/l	25		< 1.0	< 1,0	< 0.1	< 1,0	< 1,0	< 1,0	< 1,0	< 0.1	< 1.0	< 1.0	< 1.0	< 0.1
TOLUENE	µg/l	15	47	< 1,0	2,14	1,2	< 1,0	< 1,0	< 1,0	< 1,0	< 0.1	< 1,0	< 1,0	1,68	<01
p-XILENE	µg/l	10	37	< 1,0	< 1,0	0.8	< 1,0	< 1,0	< 1,0	< 1,0	< 0.1	< 1,0	< 1,0	< 1,0	1
Pb TETRAETILE	µg/l	0,1		< 0,01	< 0,01		< 0,01	< 0,01	< 0,01	< 0,01		< 0,01	< 0,01	< 0,01	
мтве	µg/I	40*	653	2,79	244	96	< 2,0	< 2,0	2,68	< 2,0	< 1	< 2,0	<2,0	246	72
ЕТВЕ	µg/l	40"	6000	18,4	4300	2600	508	5,01	18,3	< 2,0	< 1	177	124	1440	870
ALIFATICI CLORURATI CANCEROGENI															
TETRACLOROETILENE	µg/l	1,1									1.7		1 1		

							POC				POC	
Descrizione		csc	CSR	MW1	MW2	MW3	MW4	MW5	MW6	MW7	MW8	SB2
Data campione				18 giu 18								
pH		111111111111111111111111111111111111111										
CONDUCIBILITA*	µS/cr	n (25°C)										
METALLI				_								
РІОМВО	µg/l	10		< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
IDROCARBURI TOTALI	µg/i	350	8100	< 35,0	4550	114	< 35,0	92,3	< 35,0	636	< 35,0	264
IDROCARBURI AROMATICI (BTEX)	-											
BENZENE	− µg/I	1	798	< 0,1	798	3,8	< 0,1	0,788	< 0,1	17,8	< 0,1	< 0,1
ETILBENZENE	µg/l	50		< 1,0	< 1,0	< 1.0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	1,42
STIRENE	µg/i	25		< 1,0	< 1,0	< 1,0	< 1.0	< 1,0	< 1,0	< 1.0	< 1.0	< 1.0
TOLUENE	µg/i	15	47	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
p-XILENE	µg/l	10	37	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1.0	< 1,0	< 1,0
Pb TETRAETILE	µg/l	0,1		< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
MTBE	µg/ī	40°	653	< 2,0	500	6,17	< 2,0	34,4	< 2,0	247	< 2,0	37,7
ETBE	hay	40*	6000	< 2,0	2180	596	19,6	652	< 2,0	313	31	694

Direzione Ambiente ed Energia SETTORE Bonifiche ed Autorizzazioni rifiuti

Via di Novoli, 26 50127 Firenze Fax 055/4383389

Prot. n. da citare nella risposta

Data

Allegati

Risposta al foglio del

n.

Oggetto: Sito Ll-1068 PV Petrolifera Adriatica 8456, ubicato in V.le Petrarca nel Comune di Livorno. Progetto Unico di Bonifica. Parere di competenza.

al Comune di Livorno – Servizio Ambiente c.a.: G. Belli

La scrivente Amministrazione Regionale,

visto il documento "Progetto Unico di Bonifica" del settembre 2018, trasmesso dalla società Aecom per conto di Petrolifera Adriatica con nota del 25 settembre 2018, ricevuta in atti regionali prot. n. 445863 del 25/09/2018, relativamente al sito di cui all'oggetto, di prossima valutazione nella conferenza di servizi convocata presso il Comune di Livorno per il giorno 18 ottobre 2018,

considerato che il Progetto in esame costituisce di fatto l'aggiornamento dell'Analisi di Rischio (AdR) sito specifica elaborato in ottemperanza alle prescrizioni formulate dalla Conferenza di Servizi del Comune di Livorno del 7 marzo 2017,

rimanda, per gli aspetti tecnici afferenti all'analisi di rischio, alle valutazioni espresse dalla competente struttura Arpat, indicando comunque la necessità di valutare la stabilizzazione della situazione riscontrata in relazione agli esiti dell'AdR medesima, attraverso un programma di monitoraggio delle acque sotterranee del sito in esame.

Si richiede al Comune che nell'atto di approvazione dell'AdR, siano espressamente riportate:

- 1. le CSR approvate per le varie matrice ambientali;
- 2. eventuali vincoli e presidi ambientali impostati con la scelta dello scenario stabilito (modello concettuale e utilizzo dell'area) per la redazione dell'analisi di rischio;
- 3. l'identificazione catastale dell'area;

Si ricorda che l'analisi di rischio sito specifica corrisponde allo scenario rispetto al quale la stessa è stata elaborata e, pertanto, qualora intervenissero in futuro dei fattori che modifichino le caratteristiche dello scenario scelto, dovrà essere redatta una nuova AdR.

Nel caso di accertato superamento delle concentrazioni di rischio, si ricorda altresì al Comune che tale situazione, ai sensi dell'art. 251 comma 2 D.lgs 152/06, va riportata dal certificato di destinazione urbanistica, nonché dalla cartografia e dalle norme tecniche di attuazione dello strumento urbanistico generale e comunicata all'Ufficio tecnico erariale competente.

Cordiali saluti

Il Dirigente Responsabile (Dott. Ing. Andrea Rafanelli)

3. PUNTO ALL'ORDINE DEL GIORNO):

Bonifica Area ex P.V. ESSO 8469 Viale N. Sauro (COD. SISBON LI087):

- "Trasmissione risultati del monitoraggio acque sotterranee (marzo-maggio 2018)"
- "Trasmissione risultati del monitoraggio acque sotterranee (agosto 2018)"

Alle ore 10,30 viene discusso il documento "Trasmissione risultati del monitoraggio acque sotterranee (marzo-maggio 2018)" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a. ed acquisito al prot. 95651 in data 27.07.2018.

Considerato che il Comune di Livorno ha richiesto al Dip. Prov.le ARPAT di predisporre specifico contributo istruttorio per i documenti "Trasmissione risultati del monitoraggio acque sotterranee (agosto 2018)" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a. ed acquisito al prot. 118092 in data 25.09.2018 e "Revisione dell'Analisi del Rischio" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a. ed acquisito al prot. 126490 in data 11.10.2018, pervenuti entrambi in data susseguente a quella di convocazione della C.d.S., i documenti vengono portati all'ordine del giorno e discussi dalla odierna Conferenza dei Servizi.

La Conferenza dei Servizi del 18 ottobre 2018

Visto il documento "Trasmissione risultati del monitoraggio acque sotterranee (marzo-maggio 2018)" ed il documento "Trasmissione risultati del monitoraggio acque sotterranee (agosto 2018)" elaborati dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a.;

Visto il documento "Revisione dell'Analisi del Rischio" elaborato dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a.;

Tenuto conto del contributo tecnico di ARPAT prot. 73314 del 17.10.2018 (in Atti nº 129602 del 18.10.2018) parte integrante del presente verbale;

Tenuto conto del contributo tecnico della Regione Toscana prot. 481772 del 17.10.2018 (in Atti nº 129828 del 18.10.2018) parte integrante del presente verbale;

Tenuto conto degli esiti della discussione odierna.

concorda quanto segue:

- 1. di prendere atto dei documenti "Trasmissione risultati del monitoraggio acque sotterranee (marzomaggio 2018)" e "Trasmissione risultati del monitoraggio acque sotterranee (agosto 2018)" elaborati dalla Soc. AECOM URS Italia S.p.a. per conto della Soc. Petrolifera Adriatica S.p.a.;
- 2. di approvare ai sensi della normativa vigente in materia il documento "Revisione dell'Analisi del Rischio" che hanno evidenziato l'assenza di rischio per i bersagli umani;
- 3. di ritenere pertanto concluso il procedimento di bonifica avviato nel 2003 senza alcun ulteriore intervento e quindi di <u>restituire l'area all'uso legittimo</u>;
- 4. in accordo a quanto previsto dalla DGRT 301/2010, compilare la modulistica relativa all'iter amministrativo ed il corrispondente report analitico in formato standard sul portale SISBON (http://sira.arpat.toscana.it/sira/sisbon.html).

Partecipano alla Conferenza dei Servizi l'Ing. Daniela Reale ed il Dott. Luca Pecchia in rappresentanza della Soc. AECOM URS Italia S.p.a.

[&]quot;Revisione dell'Analisi del Rischio"

ARPAT - AREA VASTA COSTA - Dipartimento di Livorno

Via Marradi, 114 - 57126 - Livorno

N. Prot: Vedi segnatura informatica

cl.: LI.01.23.07/55.18, LI.01.23.07/55.19

del

a mezzo: PEC

a Comune di Livorno

Dipartimento 1 – Area Tecnica Settore Ambiente comune.livorno@postacert.toscana.it

p.c. Regione Toscana

Direzione Ambiente ed Energia Settore Bonifiche e aut. Rifiuti regionetoscana@postacert.toscana.it

Oggetto: LI087 – PV Petroltecnica Adriatica 8469. Ex PVF ESSO ubicato in V.le N. Sauro nel Comune di Livorno. Parere su Trasmissione risultati del monitoraggio acque sotterranee (Marzo – Maggio 2018). Trasmissione del monitoraggio acque sotterranee (agosto 2018) e Revisione Analisi di Rischio e richiesta chiusura procedimento. Parere in merito

Questo parere è espresso in risposta alla convocazione di *Conferenza dei Servizi* (CdS) da parte del Comune di Livorno (agli atti di questo Ufficio con Prot. n. 65563 del 19.09.2018). In tale sede saranno discussi anche i documenti in oggetto inviati, rispettivamente, dalla società *AECOM URS Italia S.p.A.* (di seguito AECOM), in nome e per conto di *Petroltecnica Adriatica S.p.A.* (di seguito Petroltecnica) il 25.07.2018 e 25.09.2018 (in archivio presso questi uffici con Prot. n° 53629 del 26/07/2018 e 67161 del 25.09.2018), e da Petroltecnica l'11.10.2018 (in archivio presso questi uffici con Prot. n° 71854 dell'11.10.2018).

Premesso che:

- ♦ il quadro normativo di riferimento è D.Lgs. 152/2006 e s.m.i.; L.R. 30/2006; D.Lgs. 4/2008; D.G.R.T. 301/2010; DM 31/2015;
- per quanto riguarda l'iter amministrativo relativo al sito in oggetto si rimanda ai precedenti pareri emessi da questo Dipartimento.

Considerato che:

Analisi del Laboratorio di Parte (LdP):

♦ le analisi effettuate dal LdP nei 23 marzo, 16 maggio e 29 agosto 2018 (All. 1) su tutti i piezometri presenti in sito (PM1, PM2, PM4 ÷ PM9, SVE 1bis, SVE 2bis e SVE3), ricercando i parametri Idrocarburi totali, aromatici, MtBE ed EtBE, hanno evidenziato il solo superamento dei limiti ISS per il parametro EtBE presso il PM4 nel mese dei maggio.

Revisione Analisi di Rischio:

◆ la revisione dell'AdR effettuata considerando anche il nuovo inquinante EtBE, ha evidenziato CSR (Concentrazione Soglia di Rischio) > CRS (Concentrazione Rappresentativa in Sito), evidenziando l'assenza di rischio per la via di esposizione indiretta.

Pagina 1 di 2

Le analisi di confronto effettuate da ARPAT sulle acque sotterranee (All. 1 e All. 2) nei giorni 06.10.2017 (PM1, PM7 e PM9) e 18.05.2018 (PM1, PM6 e PM8), ricercando i parametri Idrocarburi totali, aromatici, MtBE e EtBE, hanno evidenziato concentrazioni superiori alle CSC per il parametro Idrocarburi totali presso il PM1 a maggio 2018.

Conclusioni

In base ai documenti analizzati da questo Dipartimento ed alle analisi di confronto effettuate da ARPAT si evidenzia che:

- > si concorda con i risultati ottenuti dal LdP che hanno evidenziato il rispetto delle CSC in corrispondenza dei POCs;
- > si condividono i risultati dell'AdR ottenuti dal consulente, che hanno evidenziato:
 - assenza di rischio per i bersagli umani;
- > si ritiene concluso il procedimento di bonifica.

Inoltre si ricorda che:

➢ per il sito con codice SISBON LI087, in accordo a quanto previsto dal DGRT 301/10, è
necessario compilare sul portale SISBON della Regione Toscana
(http://sira.arpat.toscana.it/sira/sisbon.html) la modulistica relativa alla corrispondente fase
tecnico amministrativa ed i risultati analitici in formato standard.

Cordiali saluti

Livorno 15/10/2018

La Responsabile del Dipartimento ARPAT di Livorno

Dr Chim. Lucia Rocchi1

Elenco allegati:

- 1. Tabella di confronto delle analisi delle acque sotterranee.
- 2. Rapporti di Prova (2017-10437, 2017-10438, 2017-10439, 2018-5969, 2018-5970 e 2018-5971).
- 1 Documento informatico sottoscritto con firma digitale ai sensi del D.Lgs 82/2005. L'originale informatico è stato predisposto e conservato presso ARPAT in conformità alle regole tecniche di cui all'art. 71 del D.Lgs 82/2005. Nella copia analogica la sottoscrizione con firma autografa è sostituita dall'indicazione a stampa del nominativo del soggetto responsabile secondo le disposizioni di cui all'art. 3 del D.Lgs 39/1993

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVÒRNO

Rapporto di Prova N. 2017-10437

del 15/11/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

Data registrazione: 06/10/2017

NUM.REGISTRO: 7278

Anno: 2017

Pratica Nº: 39972

Campione di: BON#PM1 (ACQUA PIEZOMETRICA)

Prelevato da: PETROLIFERA ADRIATICA

Verb. Prelievo N°: 20171006-00347-1

del: 06/10/2017

Data di prelievo: 06/10/2017

Luogo di prelievo: LI087#DISTRIBUTORE ESSO PV N.8469 -- VIA NAZARIO SAURO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 06/10 10 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova:

Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 16/10/2017	7	Conclusa il:	15/11/20	17	
Parametro	Metodo	Risu	iltato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	14	μg/L	-41 1112
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	=	54	µg/L	±27
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	μg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	480	μg/L	±230

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

numero di gradi di libertà >10.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-10437

del 15/11/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

> Responsabile U.O. Dr. Paolo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-10438

del 15/11/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 7279

Anno: 2017

Data registrazione: 06/10/2017

Pratica Nº: 39972

Campione di: BON#PM7 (ACQUA PIEZOMETRICA)

Prelevato da: PETROLIFERA ADRIATICA

Verb. Prelievo N°: 20171006-00347-1

del: 06/10/2017

Data di prelievo: 06/10/2017

Luogo di prelievo: Li087#DISTRIBUTORE ESSO PV N.8469 -- VIA NAZARIO SAURO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 06/10 10 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 16/10/2017		Conclusa il:	15/11/2017		4 4 4
arametro	Metodo	Rise	ultato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	<	1,0	µg/L	
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
TOLUENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	-00-
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	hg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	<	50	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-10438

del 15/11/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

> Responsabile U.O. Dr. Paolo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livomo Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-10439

del 15/11/2017

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 7280

Anno: 2017

Data registrazione: 06/10/2017

Pratica Nº: 39972

Campione di: BON#PM9 (ACQUA PIEZOMETRICA)

Prelevato da: PETROLIFERA ADRIATICA

Verb. Prelievo N°: 20171006-00347-1

del: 06/10/2017

Data di prelievo: 06/10/2017

Luogo di prelievo: LI087#DISTRIBUTORE ESSO PV N.8469 -- VIA NAZARIO SAURO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 06/10 10 °C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio

Prova iniziata il: 16/10/2017	,	Conclusa il:	15/11/2017		
Parametro	Metodo	Rist	iltato	Unità di Misura	Incertezza
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260C 2006	=	6,2	µg/L	7115
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260C 2006	=	41	µg/L	±21
BENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
TOLUENE:	EPA 5030C 2003 + EPA 8260C 2006	. <	0,1	μg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
STIRENE	EPA 5030C 2003 + EPA 8260C 2006	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	=	160	µg/L	

Note alla Prova:

L'incertezza è espressa come incertezza estesa, livello di probabilità p=0,95, fattore di copertura k=2,

numero di gradi di libertà >10.

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2017-10439

del 15/11/2017

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.
Dr. Paglo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5969

del 28/06/2018

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO: 3404

N SAME THE PROPERTY AND YOUR ASSESSMENT

Anno: 2018

Data registrazione: 17/05/2018

Pratica Nº: 42311

Campione di: BON#PM1 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20180516-00347-1

del: 16/05/2018

Data di prelievo: 16/05/2018

Luogo di prelievo: LI087#DISTRIBUTORE ESSO PV N.8469 -- VIA NAZARIO SAURO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 16/05-5°C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 24/05/2	2018	Conclusa il:	26/06/20	118	
Parametro	Metodo	Risi	ultato	Unità di Misura	Incertezza
CLOROMETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	24 Objects Wester
CLORURO DI VINILE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	2 2 17,041 22,000
1,1-DICLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	μg/L	
1,2-DICLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	
1,1-DICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	691.1 = 1999/1021
TRICLOROMETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
1,2-DICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	
1,2-DICLOROPROPANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
TRICLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	
1,1,2-TRICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
TETRACLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	μg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5969

del 28/06/2018

Prova iniziata il: 24/05/2018	8	Conclusa il:			
Parametro	Metodo	Rist	iltato	Unità di Misura	Incertezza
1,1,2,2-TETRACLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	848
ESACLOROBUTADIENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
SOMMATORIA ORGANOALOGENATI	EPA 5030C 2003 + EPA 8260D 2017	<	1,0	µg/L	
METIL-TER-BUTIL-ETERÉ (MTBE)	EPA 5030C 2003 + EPA 8260D 2017	<	1,0	µg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260D 2017	=	5,0	μg/L	
BENZENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	µg/L	
TOLUENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	μg/L	
STIRENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 、 123/2015 A+B	335376 33373337	1000	µg/L	

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Pagina 2 di 2

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5970

del 28/06/2018

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO:

3405

Anno: 2018

Data registrazione: 17/05/2018

Pratica Nº: 42311

Campione di: BON#PM6 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20180516-00347-1

del: 16/05/2018

Data di prelievo: 16/05/2018

Luogo di prelievo: LI087#DISTRIBUTORE ESSO PV N.8469 -- VIA NAZARIO SAURO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 16/05-5°C

In Dipartimento: REFRIGERATO

Loc, Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 24/05/2	2018	Conclusa il:	26/06	/2018	
Parametro	Metodo	Ris	ultato	Unità di Misura	Incertezza
CLOROMETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	
CLORURO DI VINILE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	μg/L	
1,1-DICLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	μg/L	
1,2-D!CLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	hg/F	
1,1-DICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/Ľ	
TRICLOROMETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
1,2-DICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	MM 100 M W
1,2-DICLOROPROPANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
TRICLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	μg/L	
1,1,2-TRICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	μg/L	
TETRACLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	hg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5970

del 28/06/2018

Prova iniziata il: 24/05/201	8	Conclusa il:	26/06/20	18	
Parametro	Metodo	Risi	ultato	Unità di Misura	Incertezza
1,1,2,2-TETRACLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	* · · · · · · · · · · · · · · · · · · ·
ESACLOROBUTADIENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
SOMMATORIA ORGANOALOGENATI	EPA 5030C 2003 + EPA 8260D 2017	<	1,0	hg/F	
METIL-TER-BUTIL-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260D 2017		3,8	μg/L.	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260D 2017	=	3,9	μg/L	
BENZENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	hg/r	
TOLUENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	µg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	hg/r	
STIRENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,1	hg/r	E - E/I to Machine In-
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B	<	50	hg/r	

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

> Responsabile U.O. Dr. Paolo Altemura

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5971

del 28/06/2018

Richiedente: ARPAT - DIP. LIVORNO

P.IVA: 04686190481

Indirizzo: VIA MARRADI, 114 - 57126 -- LIVORNO

NUM.REGISTRO:

3406

Anno: 2018

Data registrazione: 17/05/2018

Pratica Nº: 42311

Campione di: BON#PM8 (ACQUA PIEZOMETRICA)

Prelevato da: ARPAT DIP. LIVORNO

Verb. Prelievo N°: 20180516-00347-1

del: 16/05/2018

Data di prelievo: 16/05/2018

Luogo di prelievo: LI087#DISTRIBUTORE ESSO PV N.8469 -- VIA NAZARIO SAURO -- LIVORNO

Modalità di conservazione

Al prelievo: TEMPERATURA AMBIENTE

Al trasporto: LI 16/05-5°C

In Dipartimento: REFRIGERATO

Loc. Esecuz. Prova: Area Vasta Toscana Costa - Sett. Laboratorio

IL CAMPIONAMENTO NON È OGGETTO DI ACCREDITAMENTO

Prova iniziata il: 24/05/2018

Conclusa il: 26/06/2018

Prova iniziata II: 24/05/	2018	Conclusa II:	20/00/20	ЛВ	
Parametro	Metodo	Rist	ultato	Unità di Misura	Incertezza
CLOROMETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	hâ/r	
CLORURO DI VINILE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	μg/L	
1,1-DICLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
1,2-DICLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	μg/L	
1,1-DICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	
TRICLOROMETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	μg/L	. Pres malie. 16
1,2-DICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	hā\r	0. 310.1131 (1.00.000.000.000.000.000.000.000.000.00
1,2-DICLOROPROPANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
TRICLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	
1,1,2-TRICLOROETANO	EPA 5030C 2003 + EPA 8260D 2017	<	0,01	µg/L	
TETRACLOROETILENE	EPA 5030C 2003 + EPA 8260D 2017	<	0,05	µg/L	

Agenzia Regionale per la Protezione Ambientale della Toscana Area Vasta Toscana Costa - Sett. Laboratorio 57126 Livorno Via Marradi, 114 tel. 05532061 fax0555305615

Unità Operativa

U.O. CHIMICA II - SEDE DI LIVORNO

Rapporto di Prova N. 2018-5971

del 28/06/2018

Press in initial - 24/05/2046		Camalan	_ :1.	00/00/0040		
Prova iniziata il: 24/05/2018)	Conclus	a II:	26/06/2018		
Parametro	Metodo			ultato	Unità di Misura	Incertezza
1,1,2,2-TETRACLOROETANO	EPA 5030C 2003 + EPA 8260D 2017		<	0,01	µg/L	
ESACLOROBUTADIENE	EPA 5030C 2003 + EPA 8260D 2017		<	0,01	µg/L	
SOMMATORIA ORGANOALOGENATI	EPA 5030C 2003 + EPA 8260D 2017		<	1,0	µg/L	
METIL-TER-BUT)L-ETERE (MTBE)	EPA 5030C 2003 + EPA 8260D 2017		=	3,2	μg/L	
ETIL-TER-BUTIL-ETERE (ETBE)	EPA 5030C 2003 + EPA 8260D 2017				μg/L	
BENZENE	EPA 5030C 2003 + EPA 8260D 2017		<	0,1	µg/L	·
TOLUENE	EPA 5030C 2003 + EPA 8260D 2017		<	0,1	µg/L	
ETILBENZENE	EPA 5030C 2003 + EPA 8260D 2017		<	0,1	μg/L	
PARA-XILENE	EPA 5030C 2003 + EPA 8260D 2017		<	0,1	hg/r	
STIRENE	EPA 5030C 2003 + EPA 8260D 2017		<	0,1	µg/L	
IDROCARBURI TOTALI (espressi come N-ESANO)	ISPRA Manuali e linee guida 123/2015 A+B		=	110	µg/L	*

Il presente Rapporto di Prova si riferisce esclusivamente al campione sottoposto a prova e non può essere riprodotto parzialmente senza l'autorizzazione di ARPAT

Responsabile U.O.

Allegato 1

Ai sensi Tab, 2 All, 5 Parte IV Titolo V D.Lgs, 152/06 per le acque sotterranee *Ai sensi della Circolare ISS del 12/09/2006 n. 45848 **Ai sensi del Parere ISS del 17/12/2002 n., 49759 |A 12

							POC	POC	POC	POC	POC						
Punto codice			PM1	PM1 ARPAT	INC.	PM2	PM4	PM6	PM7	PM7 ARPAT	PM8	РМ9	PM9 ARPAT	INC	SVE1 bis	SVE2 bis	SVE3
Bata prelievo			06-ott-17	06-att-17		06-ott-17		06-ott-17	06-ott-17	06-ott-17							
non indicato)	csc	U.M.											11				
IDR_TOT_N-ESANO	350	μg/L	410	480	±230	<35	<35	<35	<35	< 50	69,9	143	160		<35	<35	<35
IDROCARBURI AROMATICI	H																
BENZENE	1	lg/L	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1
ETILBENZENE	50	μg/L	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1
STIRENE	25	μg/L	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1
TOLUENE	15	μg/L	< 0,1	< 0,1		< 0,1	< 0.1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	< 0,1	< 0.1
m,p-XILENE	10	μg/L	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1
MtBE	40	μg/L	15,9	14		<1	2,08	1,34	<1	< 1	<1	8,8	6,2		1,91	<1	1,21
EtBE	40	μg/L	58,40	54,00	±27	6,76	10,90	3,16	<1		52,60	50,00	41	±21	6,97	3,96	12,60

					POC		POC	POC	POC				
Punto codice			PM1	PM2	PM4	PM5	PM6	PM7	PM8	PM9	SVE1 bis	SVE2 bis	SVE3
Data prelievo			19-dic-17										
Parametro (in µg/L quando non indicato)	csc	U.M.											
IDR_TOT_N-ESANO	350	μg/L	296	< 35	< 35	< 35	<35	<35	65,6	101	<35	39,2	<35
IDROCARBURI AROMATICI	T												
BENZENE	1	lg/L	< 0,1	< 0,1	0,484	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ETILBENZENE	50	µg/L	< 1,0	< 1,0	< 1,0	< 1.0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
STIRENE	25	μg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
TOLUENE	15	μg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
m,p-XILENE	10	µg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
MtBE	40	μg/L	3,25	< 2,0	8,6	2,38	2,95	< 2,0	2,03	< 2,0	3,44	2,75	< 2,0
EtBE	40	μg/L	13,80	< 2,0	374,00	2,39	4,92	< 2,0	31,20	7,50	3,84	3,45	< 2,0

					POC		POC	POC	POC				
Punto codice			PM1	PM2	PM4	PM5	PM6	PM7	PM8	PM9	SVE1 bis	SVE2 bis	SVE3
Data prelievo			23-mar-18										
Parametro (in μg/L quando non indicato)	csc	υ.м.											
IDR_TOT_N-ESANO	350	μg/L	157	120	< 35	154	< 35	< 35	< 35	188	< 35	< 35	< 35
IDROCARBURI AROMATICI													
BENZENE	1	Ig/L	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ETILBENZENE	50	μg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
STIRENE	25	μg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
TOLUENE	15	μg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
m,p-XILENE	10	μg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
MtBE	40	μg/L	< 2,0	2,01	2,24	< 2,0	2,3	< 2,0	3,21	4,77	2,27	< 2,0	< 2,0
EtBE	40	μg/L	5,65	7,43	9,74	5,44	12,5	< 1,0	25,9	14,60	1,92	1,17	< 2,0

acque

						POC		POC	POC	POC	POC					
Punto codice			PM1	PM1 ARPAT	PM2	PM4	PM5	PM6	PM6, (POC)ARPAT	PM7	PM8	PM8 ARPAT	PM9	SVE1 bis	SVE2 bis	SVE3
Data prelievo			18-mag-18	18-mag-18	18-mag-18	18-mag-18	18-mag-18	18-mag-18	18-mag-18	18-mag-18	18-mag-18	18-mag-18	18-mag-18	###	18-mag-18	18-mag-18
Parametro (in µg/L quando non indicato)	csc	U.M.														
IDR_TOT_N-ESANO	350	μg/L	452**	1000	< 35,0	< 35,0	< 35,0	< 35,0	<50	< 35,0	< 35,0	110	77,8	< 35,0	< 35,0	< 35,0
IDROCARBURI AROMATICI																
BENZENE	1	lg/L	< 0,1	< 0,1	< 0.1	< 0.1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1	< 0,1
ETILBENZENE	50	µg/L	< 1,0	< 0,1	< 1,0	< 1.0	< 1.0	< 1,0	< 0,1	< 1,0	< 1.0	< 0,1	< 1,0	< 1,0	< 1,0	< 1,0
STIRENE	25	μg/L	< 1,0	< 0,1	< 1,0	< 1,0	< 1,0	< 1,0	< 0,1	< 1,0	< 1,0	< 0,1	< 1,0	< 1,0	< 1,0	< 1,0
TOLUENE	15	μg/L	< 1,0	< 0,1	< 1,0	< 1,0	< 1,0	< 1,0	< 0,1	< 1,0	< 1,0	< 0,1	< 1,0	< 1,0	< 1,0	< 1,0
m,p-XILENE	10	μg/L	< 1,0	< 0,1	< 1,0	< 1,0	< 1,0	< 1,0	< 0,1	< 1,0	< 1,0	< 0,1	< 1,0	< 1,0	< 1,0	< 1,0
MtBE	40	µg/L	< 2,0	<1	< 2,0	16,6	4,68	3,15	3,8	35,9	3,06	3,20	2,84	3,58	4,56	3,72
EtBE	40	μg/L	< 2,0	5,00	29,6	626,00	4,09	3,44	3,9	74,4	26,70	18,00	6,82	5,27	12,3	2,35
CLOROMETANO	µд/1	1,5		<0,05					<0,05			<0,05				
CLORURO DI VINILE	μg/l	0,5		<0,05					<0,05			<0,05				
1,1-DICLOROETILENE	µg/l	0,05		<0,01					<0,01			<0,01				
TRICLOROMETANO	μg/l	0,15		<0,01					<0.01			<0,01				
1,2-DICLOROETANO	μg/l	3		<0,05					<0,05			<0,05				
TRICLOROETILENE	μg/l	1,5		<0,05					<0,05			<0,05				
TETRACLOROETILENE	µg/I	1,1		<0,05					<0,05			<0,05				
ESACLOROBUTADIENE	μg/l	0,15		<0,01					<0,01			<0,01				
SOMMATORIA OA	µg/l	10		<1					<1			<1				
1,1-DICLOROETANO	μg/l	810		<0,05					<0,05			<0,05				
1,1,2-TRICLOROETANO	µg/l	0,2		<0,01					<0,01			<0,01				
1,1,2,2-TETRACLOROETAN	_	0,05		<0,01					<0,01			<0,01				
1,2-DICLOROPROPANO	µg/l	0,15		<0,01					<0,01			<0,01				
1,2-DICLOROETILENE	μg/l	60		<0,05				1	<0,05			<0,05				

					POC		POC	POC	POC				
Punto codice			PM1	PM2	PM4	PM5	PM6	PM7	PM8	PM9	SVE1 bis	SVE2 bis	SVE3
Data prelievo			29-ago-18										
Parametro (in µg/L quando non indicato)	csc	U.M.											
IDR_TOT_N-ESANO	350	μg/L	324	< 35,0	57	53,4	< 35,0	46	92,6	< 35,0	< 35,0	< 35,0	267
IDROCARBURI AROMATICI													
BENZENE	1	Ig/L	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ETILBENZENE	50	µg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
STIRENE	25	µg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1.0	< 1.0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
TOLUENE	15	µg/L	1,020	< 1,0	< 1.0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
m,p-XILENE	10	μg/L	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
MtBE	40	µg/L	2,78	2,09	< 2,0	4,45	4,37	14,1	2,69	2,54	3,78	< 2,0	< 2,0
FIRE	40	ua/l	26.30	3.42	< 2.0	4.96	5.68	24.6	13.80	9.35	6.78	16.7	7.46

Direzione Ambiente ed Energia SETTORE Bonifiche ed Autorizzazioni rifiuti

Via di Novoli, 26 50127 Firenze Fax 055/4383389

Prot. n. da citare nella risposta

Data

Allegati

Risposta al foglio del

n

Oggetto: Sito LI087 Distributore Petrolifera Adriatica EX ESSO PV n. 8469, ubicato in V.le Nazario Sauro nel Comune di Livorno. Revisione dell'Analisi di Rischio e richiesta chiusura procedimento. Parere di competenza.

al Comune di Livorno – Servizio Ambiente c.a.: G. Belli

La scrivente Amministrazione Regionale,

vista la documentazione relativa alla revisione dell'Analisi di rischio dell'ottobre 2018, trasmessa dalla società Aecom per conto di Petrolifera Adriatica con nota del 11 ottobre 2018, ricevuta in atti regionali prot. n. 473499 del 12/10/2018, relativamente al sito di cui all'oggetto, di prossima valutazione nella conferenza di servizi convocata presso il Comune di Livorno per il giorno 18 ottobre 2018.

considerato che la documentazione in esame è stata trasmessa da Aecom in ottemperanza alle prescrizioni formulate dalla Conferenza di Servizi del Comune di Livorno del 5 maggio 2016 e successive (conferenza del 6 luglio 2017 e conferenza del 8 febbraio 2018),

rimanda, per gli aspetti tecnici afferenti all'analisi di rischio e per eventuali indicazioni circa il monitoraggio post-AdR, alle valutazioni espresse dalla competente struttura Arpat.

Si richiede al Comune che nell'atto di approvazione dell'AdR, siano espressamente riportate:

- 1. le CSR approvate per le varie matrice ambientali;
- 2. eventuali vincoli e presidi ambientali impostati con la scelta dello scenario stabilito (modello concettuale e utilizzo dell'area) per la redazione dell'analisi di rischio;
- 3. l'identificazione catastale dell'area;

Si ricorda che l'analisi di rischio sito specifica corrisponde allo scenario rispetto al quale la stessa è stata elaborata e, pertanto, qualora intervenissero in futuro dei fattori che modifichino le caratteristiche dello scenario scelto, dovrà essere redatta una nuova AdR. In tal senso si raccomanda al Comune di mantenere memoria di tale condizione negli strumenti urbanistici.

Nel caso di accertato superamento delle concentrazioni di rischio, si ricorda altresì al Comune che tale situazione, ai sensi dell'art. 251 comma 2 D.lgs 152/06, va riportata dal certificato di destinazione urbanistica, nonché dalla cartografia e dalle norme tecniche di attuazione dello strumento urbanistico generale e comunicata all'Ufficio tecnico erariale competente.

Cordiali saluti

Il Dirigente Responsabile (Dott. Ing. Andrea Rafanelli)

4. PUNTO ALL'ORDINE DEL GIORNO:

Bonifica Area P.V. Carburanti ENI Via Marradi (COD. SISBON LI092):

"Risposta alle prescrizioni di cui alla C.d.S. del 06.07.2018"

Alle ore 10,45 viene discusso il documento "Risposta alle prescrizioni di cui alla C.d.S. del 06.07.2018" elaborato dalla Soc. Syndial Servizi Ambientali S.p.a. per conto della Soc. ENI S.p.a. ed acquisito al prot. 98193 in data 03.08.2018.

La Conferenza dei Servizi del 18 ottobre 2018

Visto il documento "Risposta alle prescrizioni di cui alla C.d.S. del 06.07.2018" elaborato dalla Soc. Syndial Servizi Ambientali S.p.a. per conto della Soc. ENI S.p.a.;

Tenuto conto del contributo tecnico di ARPAT prot. 73319 del 17.10.2018 (in Atti n° 129597 del 18.10.2018) parte integrante del presente verbale;

Tenuto conto degli esiti della discussione odierna.

concorda quanto segue:

- 1. di prendere atto del documento "Risposta alle prescrizioni di cui alla C.d.S. del 06.07.2018" in cui si evidenzia che non è intenzione del consulente attivare la procedura di cui all'art. 245 del D. L.vo 152/2006 e s.m.i. in merito alle non conformità rilevate, per alcuni organoclorurati, presso alcuni piezometri;
- 2. di richiedere alla Soc. ENI di trasmettere un documento in cui sia riportato, nel dettaglio:
 - una ricostruzione storica delle varie fasi dell'attività e delle lavorazioni svolte sul sito, in particolare quelle eseguite nel locale adibito ad officina che riporti i prodotti utilizzati;
 - una planimetria di dettaglio delle linee fognarie con l'ubicazione dei vari pozzetti di ispezione ed il punto di allaccio alla pubblica fognatura;
- 3. di prendere atto che, sulla base dei pozzi individuati nella zona contermine al punto vendita, non risulti necessario ampliare l'indagine piezometrica data la loro elevata distanza;
- 4. di richiedere alla Ditta, in accordo a quanto previsto dalla DGRT 301/2010, di comunicare ai soggetti interessati, ai sensi della D.G.R.T. 301/2010, l'inizio delle attività con un preavviso di almeno 10 giorni lavorativi;
- 5. in accordo a quanto previsto dalla DGRT 301/2010, compilare la modulistica relativa all'iter amministrativo ed il corrispondente report analitico in formato standard sul portale SISBON (http://sira.arpat.toscana.it/sira/sisbon.html).

Partecipano alla Conferenza dei Servizi il Dott. Geol. Elisa Landi e l'Ing. Davide Tellini della Soc. di consulenza Syndial S.p.a.

ARPAT - AREA VASTA COSTA - Dipartimento di Livorno

Via Marradi, 114 - 57126 - Livorno

N. Prot: Vedi segnatura informatica

cl.: LI.01.23.07/43.22

del

a mezzo: PEC

a Comune di Livorno

Dipartimento 1 – Area Tecnica Settore Ambiente comune.livorno@postacert.toscana.it

p.c. Regione Toscana

Direzione Ambiente ed Energia Settore Bonifiche e aut. Rifiuti regionetoscana@postacert.toscana.it

Oggetto: LI092 – PV ENI 53656, ubicato in Via G. Marradi nel Comune di Livorno. Parere su Risposta prescrizioni CDS del 06 luglio 2018

Questo parere è espresso in risposta alla convocazione di *Conferenza dei Servizi* (CdS) da parte del Comune di Livorno (agli atti di questo Ufficio con Prot. n. 65563 del 19.09.2018). In tale sede sarà discusso anche il documento in oggetto inviato con Prot. 920 LT dalla società *Syndial S.p.A. - servizi ambientali* (di seguito Syndial), in nome e per conto di *ENI S.p.A. - Refining & Marketing* (di seguito ENI), il 01.08.2018 (in archivio presso questi uffici con Prot. n° 55570 del 02.08.2018). Premesso che:

- il quadro normativo di riferimento è D.Lgs. 152/2006 e s.m.i.; L.R. 30/2006; D.Lgs. 4/2008; D.G.R.T. 301/2010; DM 31/2015;
- per quanto riguarda l'iter amministrativo relativo al sito in oggetto si rimanda ai precedenti pareri emessi da questo Dipartimento.

Considerato che:

Risposte alle prescrizioni date nella CdS del 06.07.2018:

- prescrizione 2 richiesta di procedere, per l'inquinamento da organoclorurati, secondo quanto previsto dall' Art. 245 del D.Lgs. 152/06 e di inviare nel report successivo, anche i dati relativi alle soggiacenze anche in formato editabile:
 - comunicava che, in via collaborativa intendeva proseguire con la relativa analisi sebbene tali parametri non fossero correlabili all'attività di vendita del carburante. Pertanto sotto tale ipotesi non verrà avanzata la comunicazione ai sensi dell'art. 245 del D.Lgs. 152/06;
 - i dati sono stati inviati con nota Syndial n. 584 del 24.05.2018;
- prescrizione 3 al fine di poter ricostruire lo stato di inquinamento di tutte le matrici coinvolte (acque sotterranee, acque di out e gas di scarico), l'invio di tutte le corrispondenti tabelle in formato editabile:
 - i dati sono stati inviati con nota Syndial n. 584 del 24.05.2018;
- <u>prescrizione 4</u> compilare i moduli di competenza sul portale SISBON;
 - prescrizione ottemperata;
- prescrizione 5 comunicare con almeno 10 giorni di anticipo, luogo e data dei monitoraggi;
 - prescrizione ottemperata.

Conclusioni

In base ai documenti analizzati da questo Dipartimento si evidenzia che:

- si prende atto della volontà del consulente di non attivare la procedura ai sensi dell'Art. 245 del D.Lgs. 152/06, in merito alle non conformità per alcuni organoclorurati rilevate presso alcuni piezometri di confine del sito;
- > il consulente ha ottemperato a tutte le prescrizioni indicate nel verbale della CdS del 06.07.2018.

Pagina 1 di 2

tel. 055.32061 - fax 055.3206324 - p.iva 04686190481 - www.arpat.toscana.it - per informazioni: urp@arpat.toscana.it per comunicazioni ufficiali PEC: arpat.protocollo@postacert.toscana.it - (accetta solo PEC),

ARPAT tratta i dati come da Reg.UE 679/2016. Per info su modalità e diritti degli interessati: www.arpat.toscana.it/utilita/privacy

Inoltre si ricorda che:

- in base a quanto previsto dalla DGRT 301/2010 il soggetto obbligato comunica alla struttura ARPAT, con preavviso non inferiore a dieci giorni lavorativi, la data ed il luogo di effettuazione delle indagini;
- per il sito con codice SISBON LI092, in accordo a quanto previsto dal DGRT 301/10, è necessario compilare sul portale SISBON della Regione Toscana (http://sira.arpat.toscana.it/sira/sisbon.html) la modulistica relativa alla corrispondente fase tecnico amministrativa ed i risultati analitici in formato standard.

Cordiali saluti Livorno 16/10/2018

La Responsabile del Dipartimento ARPAT di Livorno

Dr Chim. Lucia Rocchi¹

1 Documento informatico sottoscritto con firma digitale ai sensi del D.Lgs 82/2005. L'originale informatico è stato predisposto e conservato presso ARPAT in conformità alle regole tecniche di cui all'art. 71 del D.Lgs 82/2005. Nella copia analogica la sottoscrizione con firma autografa è sostituita dall'indicazione a stampa del nominativo del soggetto responsabile secondo le disposizioni di cui all'art. 3 del D.Lgs 39/1993

5. PUNTO ALL'ORDINE DEL GIORNO:

Bonifica Area Istituto Salesiano di Don Bosco (COD. SISBON L1226):

"Superamento delle CSC delle acque del pozzo"

Alle ore 11,00, nell'ambito delle varie ed eventuali, viene esaminato il documento la "Comunicazione" redatta dalla Soc. Ecoflash S.r.l. per conto dell'Istituto Salesiano di Don Bosco ed acquisita al prot. 122388 in data 04.10.2018.

La Conferenza dei Servizi del 18 ottobre 2018

Visto il documento "Comunicazione" redatta dalla Soc. Ecoflash S.r.l. per conto dell'Istituto Salesiano di Don Bosco;

Preso atto dalla documentazione agli atti degli Enti partecipanti alla Conferenza dei Servizi che evidenzia quanto segue:

- la caratterizzazione dei terreni ha evidenziato una contaminazione dei terreni e delle acque superficiali da Idrocarburi rilasciati da n° 2 serbatoi interrati;
- l'intervento di messa in sicurezza prevede la realizzazione di un pozzo di emungimento dotato di elettropompa ed installazione di un sistema di trattamento delle acque costituito da un filtro a carboni attivi munito della strumentazione di misura e registrazione delle portate e della quantità totale delle acque emunte;
- considerato che l'intervento eseguito dalla Soc. ha comportato la rimozione delle cisterne interrate e la loro sostituzione e che le analisi eseguite da ARPAT sulla matrice suolo insaturo, tra il 10/12/2003 ed il 23/01/2004 e sulla matrice acque sotterranee, in data 09/02/2004, contrariamente a quelle eseguite dal consulente non hanno evidenziato alcun superamento delle C.S.C. sia nei terreni che nelle acque sotterranee

Pertanto, tenuto conto degli esiti della discussione odierna.

concorda quanto segue:

1. di prendere atto della Comunicazione e richiedere alla Ditta Ecoflash di aggiornare il quadro della contaminazione delle acque con una campagna di investigazione da eseguirsi in contraddittorio con il Dipartimento Prov.le ARPAT.

Non partecipa alla Conferenza dei Servizi nessun rappresentante della Soc. Ecoflash S.r.l.

W M

Null'altro essendovi da aggiungere la Conferenza dei Servizi si conclude alle ore 11.15

Comune di Livorno Danzi Michele

Regione Toscana assente

ARPAT Dip. Prov.le Rocchi Lucia

ASL n° 6 Mirabelli Mauro

Si fa presente che nel verbale sono riportati i protocolli dei contributi tecnici di ARPAT relativi alla procedura di bonifica oggetto della seguente Conferenza dei Servizi e parte integrante del presente verbale. Pertanto il testo integrale potrà essere scaricato sull'applicativo SISBON disponibile all'indirizzo:

http://sira.arpat.toscana.it/sira/sisbon.html.